
UNIT- 1 Introduction to Kotlin Programming

1 | Page Prepared by: Hardik Chavda

Basics of Kotlin

What is Kotlin

Kotlin is a general-purpose, statically typed, and open-source programming
language. It runs on JVM and can be used anywhere Java is used today. It can be
used to develop Android apps, server-side apps and much more.

History of Kotlin

Kotlin was developed by the JetBrains team. A project was started in 2010 to
develop the language and officially, first released in February 2016. Kotlin was
developed under the Apache 2.0 license.

Features of Kotlin

Concise: Kotlin reduces writing the extra codes. This makes Kotlin more concise.

Null safety: Kotlin is null safety language. Kotlin aimed to eliminate the
NullPointerException (null reference) from the code. Interoperable.

Interoperable: Kotlin easily calls the Java code in a natural way as well as Kotlin
code can be used by Java.

Smart cast: It explicitly typecasts the immutable values and inserts the value in
its safe cast automatically.

Compilation Time: It has better performance and fast compilation time.

Tool-friendly: Kotlin programs are build using the command line as well as any
Java IDE.

Extension function: Kotlin supports extension functions and extension
properties which means it helps to extend the functionality of classes without
touching their code.

UNIT- 1 Introduction to Kotlin Programming

2 | Page Prepared by: Hardik Chavda

Kotlin Environment Setup

Prerequisite
Since Kotlin runs on JVM, it is necessary to install JDK and setup the JDK and JRE
path in the local system environment variable.

Kotlin Environment Setup (IDE)
Install IDE for Kotlin
There are various Java IDE available which support Kotlin project development.
We can choose these IDE according to our compatibility.

1. Download Community Version IDE.

2. Run the downloaded setup and click next.

UNIT- 1 Introduction to Kotlin Programming

3 | Page Prepared by: Hardik Chavda

3. Click Next again

4. Select Update Path and click next.

5. Click Install and then Finish.

UNIT- 1 Introduction to Kotlin Programming

4 | Page Prepared by: Hardik Chavda

Running First Program

1. Open Kotlin, Select Confirm and Continue

2. Press Don’t Send.

3. Select New Project

UNIT- 1 Introduction to Kotlin Programming

5 | Page Prepared by: Hardik Chavda

4. Select Kotlin/JVM and Press Next

5. Press Finish

UNIT- 1 Introduction to Kotlin Programming

6 | Page Prepared by: Hardik Chavda

6. Press Create

7. Final Screen

UNIT- 1 Introduction to Kotlin Programming

7 | Page Prepared by: Hardik Chavda

8. Right click on src and select Kotlin Class/File

9. Select Class and Write FileName

10. Write Program

UNIT- 1 Introduction to Kotlin Programming

8 | Page Prepared by: Hardik Chavda

11. Run the program

The fun keyword is used to declare a function. A function is a block of code
designed to perform a particular task. In the example above, it declares the
main() function.

The main() function is something you will see in every Kotlin program. This
function is used to execute code. Any code inside the main() function's curly
brackets {} will be executed.

For example, the println() function is inside the main() function, meaning that
this will be executed. The println() function is used to output/print text, and in
our example it will output "Hello World".

NOTE:Before Kotlin version 1.3, it was required to use the main() function with
parameters, like: fun main(args : Array<String>).

UNIT- 1 Introduction to Kotlin Programming

9 | Page Prepared by: Hardik Chavda

Operations and Priorities
Program elements:

● Literals
Kotlin provides literals for the basic types (numbers, character, Boolean, String).

var intLiteral = 5
var doubleLiteral = .02
var stringLiteral = "Hello"
var charLiteral = '1'
var boolLiteral = true

● Variables

A variable is something that we use to manipulate data or, more precisely,
a value. Values are things that you can store, manipulate, print, push, or pull
from the network. For us to be able to work with values, we need to put them
inside variables. A variable in Kotlin is created by declaring an identifier using
the var keyword followed by the type, like in the statement.

var foo: Int

In this statement, foo is the identifier and Int is the type. Kotlin specifies types
by placing it to the right of the identifier and is separated from it by a colon.

Now that the variable is declared, we can assign a value to it, like so:

foo = 10 and then, use it in a function, like the following:
println(foo)

We can declare and define variables on the same line, like in Java.
Here’s the var foo example again.

var foo: Int = 10
println(foo)

We can still shorten the assignment statement above by omitting the type (Int).
See the sample code:

var foo = 10
println(foo)

UNIT- 1 Introduction to Kotlin Programming

10 | Page Prepared by: Hardik Chavda

Kotlin uses another keyword to declare variables, the val keyword. Variables
declared with this keyword can be initialized only once within the execution
block where they were defined. That makes them effectively constants; think of
val as the equivalent of the final keyword in Java—once you initialize it to a
value, you can’t change it anymore, they’re immutable. While variables that
were created using var are mutable, they can be changed as many times as you
want.

val variables are declared and initialized just like var variables:

val a = 10 // declaration and initialization on the same line

They can also be declared and initialized at a later time, like the statements here:

val a: Int
a = 10

Just remember that variables that are declared with the val keyword are final
and cannot be re-assigned once you’ve initialized them to a value. The code
snippet here will not work:

val boo = "Hello"
boo = "World" // boo already has a value

If you think you need to change the value of the variable boo at a later time,
change the declaration from val to var.

UNIT- 1 Introduction to Kotlin Programming

11 | Page Prepared by: Hardik Chavda

● Expressions and Statements

An expression is a combination of operators, functions, literal values,

variables, or constants and always resolves to a value. It also can be part of a
more complex expression. A statement can contain expressions, but in itself, a
statement doesn’t resolve to a value. It cannot be part of other statements. It’s
always a top-level element in its enclosing block.

For the most part, what you learned in Java about expressions and

statements holds true in Kotlin, but there are slight differences. As we go further
along, I’ll point out the differences between Java and Kotlin when it comes to
statements and expressions. Some of these differences are:

Assignments are expressions in Java, but they are statements in Kotlin.

That means you cannot pass assignment operations as argument to loop
statements like while

In Java

while ((rem = a % b) != 0) {
 a = b
 b = rem

}
println(b)

In Kotlin

var foundGcf = false
while(!foundGcf) {
 rem = a % b
 if (rem != 0) {

 a = b
 b = rem

 }
 else {

 foundGcf = true
}

}
println(b)

UNIT- 1 Introduction to Kotlin Programming

12 | Page Prepared by: Hardik Chavda

● Keywords

Keywords are reserved terms that have special meaning to the compiler,

and as such, they cannot be used as identifiers for any program elements such
as classes, variable names, function names, and interfaces.

Kotlin has hard, soft, and modifier keywords. The hard keywords are
always interpreted as keywords and cannot really be used as identifiers. Some
examples of these are:
as, break, class, continue, do, else, false, while, this, throw, try, super, and
when.

Soft keywords act as reserved words in certain context where they are
applicable; otherwise, they can be used as a regular identifier. Some examples
of soft keywords are the following:
file, finally, get, import, receiver, set, constructor, delegate, get, by, and
where.

Finally, there are modifier keywords. These things act as reserved words

in modifier lists of declarations; otherwise, they can be used as identifiers. Some
examples of these things are the following:
 abstract, actual, annotation, companion, enum, final, infix, inline, lateinit,
operator, and open.

● Whitespace

Like Java, Kotlin is also a tokenized language; whitespace is not significant

and can be safely ignored. You can write your codes with extravagant use of
whitespace, like

fun main(args: Array<String>) {
 println("Hello")
}

or you can write it with very little of it, like the following example:

fun main(args: Array<String>) {println("Hello")

UNIT- 1 Introduction to Kotlin Programming

13 | Page Prepared by: Hardik Chavda

● Operators

Operators are the special symbols that perform different operation on

operands. For example + and – are operators that perform addition and
subtraction respectively. Like Java, Kotlin contains different kinds of operators.

Arithmetic Operators –

Operators Meaning Expression Translate to
+ Addition a + b a.plus(b)
– Subtraction a – b a.minus(b)
* Multiplication a * b a.times(b)
/ Division a / b a.div(b)
% Modulus a % b a.rem(b)

Relational Operators –
Operators Meaning Expression Translate to
> greater than a > b a.compareTo(b) > 0
< less than a < b a.compareTo(b) < 0
>= greater than a >= b a.compareTo(b) >= 0
 or equal to
<= less than or a <= b a.compareTo(b) <= 0
 equal to
== is equal to a == b a?.equals(b) ?:
 (b === null)
!= not equal to a != b !(a?.equals(b) ?:
 (b === null)) > 0

Assignment Operators –

Operators Expression Translate to
+= a = a + b a.plusAssign(b) > 0
-= a = a – b a.minusAssign(b) < 0
*= a = a * b a.timesAssign(b)>= 0
/= a = a / b a.divAssign(b) <= 0
%= a = a % b a.remAssign(b)

UNIT- 1 Introduction to Kotlin Programming

14 | Page Prepared by: Hardik Chavda

Unary Operators –

Operators Expression Translate to
++ ++a or a++ a.inc()
— –a or a– a.dec()

Logical Operators –

Operators Meaning Expression
&& return true if all expressions are true (a>b) && (a>c)
|| return true if any of expression is true (a>b) || (a>c)
! return complement of the expression a.not()

● Comments

Comments are useless to the compiler; it ignores them. But they are

useful to other people (and you) who will read the codes.

// This statement will be ignored

/*
 Everything inside the pair of these slashes
 and asterisks will be ignored by the compiler
*/

UNIT- 1 Introduction to Kotlin Programming

15 | Page Prepared by: Hardik Chavda

Basic types
Kotlin has some basic types, but they are not the same as Java’s primitive types
because all types in Kotlin are objects.

● Numbers and Literal Constants
Kotlin’s Number Built-In Type

Type Bit
Double
Float
Long
Int

Short
Byte

Width
64
32
64
32
16
8

Kotlin handles numbers very close to how Java handles them but with

some notable differences. For example, widening conversions are not implicit
anymore; you will need to perform the conversions deliberately.

var a = 10L // a is a Long literal, note the L postfix
var b = 20
var a = b // this won't work
var a = b.toLong() // this will work

When whole numbers are used as literal constants, they are automatically

Ints. To declare a Long literal, use the L postfix, like

var a = 100 // Int literal
var b = 10L // Long literal

You can use underscores in numeric literals to make them more readable.

This feature was introduced in Java 7 and its later versions.

var oneMillion = 1_000_000
var creditCardNumber = 1234_5678_9012_3456

Literals with decimal positions are automatically Doubles. To declare a
float literal, use the F postfix, like

UNIT- 1 Introduction to Kotlin Programming

16 | Page Prepared by: Hardik Chavda

var a = 3.1416 // Double literal
var b = 2.54 // Float literal

Every number type can be converted to any of the number types. That

means all Double, Float, Int, Long, Byte, and Short types support the following
member functions:

• toByte() : Byte
• toShort() : Short
• toInt() : Int
• toLong() : Long
• toFloat() : Float
• toDouble() : Double
• toChar() : Char

● Characters

Character literals are created by using single quotes, like

var enterKey = 'a'

● Booleans

Booleans are represented by the literals true and false. Kotlin doesn’t

have the notion of truthy and falsy values, like in other languages such as Python
or JavaScript. It means that for constructs that expect a Boolean type, you have
to supply either a Boolean literal, variable, or expression that will resolve to
either true or false.

var count = 0
if (count) println("zero") // won't work
if ("") println("empty") // won't work either

UNIT- 1 Introduction to Kotlin Programming

17 | Page Prepared by: Hardik Chavda

● Strings
Much of what we’ve learned about Java Strings are still applicable in

Kotlin; hence, this section will be short. The easiest way to create a String is to
use the escaped string literal—escaped strings are actually the kind of strings we
know from Java. These strings may contain escape characters like \n, \t, \b, etc.
See the code snippet below.

var str: String = "Hello World\n"

Kotlin has another kind of string that is called a raw string. A raw string is created
by using triple quote delimiter. They may not contain escape sequences, but
they can contain new lines, like

var rawStr = """Amy Pond, there's something you'd better understand about me 'cause it's
important, and one day your life may depend on it:
 I am definitely a mad man with a box! """

A couple more things we need to know about Kotlin strings are as follows:

1. They have iterators, so we can walk through the characters using a for loop:

val str = "The quick brown fox"
for (i in str) println(i)

2. Its elements can be accessed by the indexing operator (str[elem]), pretty
much like Arrays

println(str[2)) // returns 'e'

3. We can no longer convert numbers (or anything else for that matter) to a
String by simply adding an empty String literal to it:

var strNum = 10 + "" // this won't work anymore
var strNum = 10.toString() // we have to explicitly convert now.

We can still use String.format and System.out.printf in Kotlin; after all, we can
use Java codes from within Kotlin.

UNIT- 1 Introduction to Kotlin Programming

18 | Page Prepared by: Hardik Chavda

Decision Making

if (expression) statement where expression resolves to Boolean. If the
expression is true, the statement will be executed; otherwise, the statement will
be ignored and program control will flow to the next executable statement.
When you need to execute more than one statement, you can use a block with
the if construct, like

If else

val d = Date()
val c = Calendar.getInstance()
val day = c.get(Calendar.DAY_OF_WEEK)
if (day == 1) {
 println("Today is Sunday")
}
else if (day == 2) {
 println("Today is Monday")
}
else if (day == 3) {
 println("Today is Tuesday")
}

The new thing about Kotlin’s if is that it’s an expression, which means we can do
things like

val theQuestion = "Doctor who"
val answer = "Theta Sigma"
val correctAnswer = ""
var message = if (answer == correctAnswer) {
 statement
}
else{
 statement
}

UNIT- 1 Introduction to Kotlin Programming

19 | Page Prepared by: Hardik Chavda

When
Kotlin doesn’t have a switch statement, but it has the when construct. Its form
and structure is strikingly similar to the switch statement. In its simplest form, it
can be implemented like this:

val d = Date()
val c = Calendar.getInstance()
val day = c.get(Calendar.DAY_OF_WEEK)
when (day) {
 1 -> println("Sunday")
 2 -> println("Monday")
 3 -> println("Tuesday")
 4 -> println("Wednesday")
}

when matches the argument (the variable day) against all branches sequentially
until it encounters a match; note that unlike in switch statements, when a match
is found, it doesn’t flow through or cascade to the next branch—hence, we don’t
need to put a break statement.

The when construct can also be used as an expression, and when it’s used as
such, each branch becomes the returned value of the expression. See the code
example:

val d = Date()
val c = Calendar.getInstance()
val day = c.get(Calendar.DAY_OF_WEEK)
var dayOfweek = when (day) {
 1 -> "Sunday"
 2 -> "Monday"
 3 -> "Tuesday"
 4 -> "Wednesday"
 else -> "Unknown"
}

Just remember to include the else clause when it is used as an expression. The
compiler thoroughly checks all possible pathways and it needs to be exhaustive,
which is why the else clause becomes a requirement.

UNIT- 1 Introduction to Kotlin Programming

20 | Page Prepared by: Hardik Chavda

Loop Control

While
The while and do . . while statements work exactly as they do in Java—and like
in Java, these are also statements and not expressions. We won’t spend too
much time on while and do . . while loops here.

A basic usage of the while loop is shown here, just as a refresher.

fun main(args: Array<String>) {
 var count = 0
 val finish = 5
 while (count++ < finish) {
 println("counter = $count")
 }
}

For
Kotlin’s for loop, instead, works on things that have an iterator. If you’ve seen
the for each loop in JavaScript, C#, or Java 8, Kotlin’s is a lot closer to that. A
basic example is shown

Basic for Loop

fun main(args: Array<String>) {
 val words = "The quick brown fox".split(" ")
 for(word in words) {
 println(word)
 }
}

If you need to work with numbers on the for loop, you can use Ranges. A range
is a type that represents an arithmetic progression of integers. Ranges are
created with the rangeTo() function, but we usually use it in its operator form (
. .). To create a range of integers from 1 to 10, we write like this:

var zeroToTen = 0..10
We can use the in keyword to perform a test of membership.

if (9 in zeroToTen) println("9 is in zeroToTen")

UNIT- 1 Introduction to Kotlin Programming

21 | Page Prepared by: Hardik Chavda

Exception Handling

Kotlin’s exception handling is very similar to Java: it also uses the try-catch-finally
construct. Whatever we’ve learned about Java’s exception handling commutes
nicely to Kotlin. However, Kotlin simplifies exception handling by simply using
unchecked exceptions. What that means is writing try-catch blocks is now
optional. You may or may not do it.

import java.io.FileReader ➊
fun main(args: Array<String>) {

 var fileReader = FileReader("README.txt") ➋

 var content = fileReader.read() ➌
 println(content)
}

➊ We can use Java’s standard library in Kotlin.

➋ This one may throw the "FileNotFoundException".

➌ And this could throw the "IOException", but Kotlin happily lets us code
without handling the possible Exceptions that may be thrown.

Although Kotlin lets us get away with not having to handle exceptions, we still
can do that, and for some situations, we may really have to. When that happens,
just write the exception handling code the way you did in Java
Kotlin’s Try-Catch Block

import java.io.FileNotFoundException
import java.io.FileReader
import java.io.IOException
fun main(args: Array<String>) {
var fileReader: FileReader
try {
 fileReader = FileReader("README.txt")
 var content = fileReader.read()
 println(content)
 }
 catch (ffe: FileNotFoundException) {
 println(ffe.message)
 }
 catch(ioe: IOException) {
 println(ioe.message)
 }
}

UNIT- 1 Introduction to Kotlin Programming

22 | Page Prepared by: Hardik Chavda

Data Structures (Collections)

Arrays
Coming from Java, you’ll need to step back a bit before working with Kotlin
arrays. In Java, these are special types; they have first-class support on the
language level. In Kotlin, arrays are just types; more specifically, they are
parameterized types. If you wanted to create an array of Strings, you might think
that the following snippet might work:

 var arr = {"1", "2", "3", "4", "5"}

This code wouldn’t make sense to Kotlin—it doesn’t treat arrays as a special
type. If we wanted to create an array of Strings like the example, we can do it in
a couple of ways. Kotlin has some library functions like arrayOf, emptyArray, and
arrayOfNulls that we can use to facilitate array creation.

Using the emptyArray Function

var arr = emptyArray<String>();
arr += "1"
arr += "2"
arr += "3"
arr += "4"
arr += "5"

Using the arrayOfNulls Function

var arr2 = arrayOfNulls<String>(2)
arr2.set(0, "1")
arr2.set(1, "2")
println(arr2[0]) // same as arr2.get(0)
println(arr2[1])

Using the arrayOf Function

var arr4 = arrayOf("1", "2", "3")

This function is probably the closest syntax we can get to the Java array literal,
which is probably why it is used by programmers more commonly. You can pass
a comma separated list of values to the function, and that automatically
populates the newly created array.

UNIT- 1 Introduction to Kotlin Programming

23 | Page Prepared by: Hardik Chavda

Special Array Types

var z = intArrayOf(1,2,3)
var y = longArrayOf(1,2,3)
var x = byteArrayOf(1,2,3)
var w = shortArrayOf(1,2,3)

println(Arrays.toString(z))
println(Arrays.toString(y))
println(Arrays.toString(x))
println(Arrays.toString(w))

Lists
A list is a type of collection that has a specific iteration order. It means that if we
added a couple of elements to the list, and then we stepped through it, the
elements would come out in a very specific order—it’s the order by which they
were added or inserted. They won’t come out in a random order or reverse
chronology, but precisely in the sequence they were added. It implies that each
element in the list has a placement order, an index number that indicates its
ordinal position.

Basic Usage of Lists

fun main(args: Array<String>) {

 val fruits = mutableListOf<String>("Apple") ➊

 fruits.add("Orange") ➋

 fruits.add(1, "Banana") ➌
 fruits.add("Guava")
 println(fruits) // prints [Apple, Banana, Orange, Guava]

 fruits.remove("Guava") ➍

 fruits.removeAt(2) ➎

 println(fruits.first() == "Strawberries") ➏

 println(fruits.last() == "Banana") ➐
 println(fruits) // prints [Apple, Banana]
}

➊ Creates a mutable list, the constructor function allows us to pass a variable
argument that will be used to populate the list. In this case, we only passed one
argument—we could have passed more.

➋ Adds an element to the list; “Orange” will come right after “Apple” since we
did not specify the ordinal position for the insertion.

➌ Adds another element to the list, but this time, we told it where exactly to put
the element. This one bumps down the “Orange” element and then inserts itself.

UNIT- 1 Introduction to Kotlin Programming

24 | Page Prepared by: Hardik Chavda

Naturally, the ordinal position or the index of all the elements that come after it
will change.

➍ You can remove elements by name. When an element is removed, the
element next to it will take its place. The ordinal position of all the elements that
comes after it will change accordingly.

➎ You can also remove elements by specifying its position on the list.

➏ You can ask if the first() element is equal to “Strawberries”.

➐ You can also test if the last() element is equal to “Banana”.

Sets
Sets are very similar to lists, both in operation and in structure, so all of the
things we’ve learned about lists apply to sets as well. Sets differ from lists in the
way they put constraints on the uniqueness of elements. They don't allow
duplicate elements or the same elements within a set. It may seem obvious to
many what the “same” means, but Kotlin, like Java, has a specific meaning for
“sameness.” When we say that two objects are the same, it means that we’ve
subjected the objects to a test for structural equality.

Basic Usage for Sets

val nums = mutableSetOf("one", "two") ➊

nums.add("two") ➋

nums.add("two") ➌

nums.add("three") ➍
println(nums) // prints [one, two, three]

val numbers = (1..1000).toMutableSet() ➎
numbers.add(6)

numbers.removeIf { i -> i % 2 == 0 } ➏
println(numbers)

➊ Creates a mutable set and initializes it by passing a variable argument to the
creator function.

➋ This doesn’t do anything. It won’t add “two” to the set because the element
“two” is already in the set.

➌ No matter how many times you try to add “two,” the set will reject it because
it already exists.

➍ This, on the other hand, will be added because “three” doesn’t exist in the
elements yet.

➎ Creates a mutable set from a range. This is a handy way of creating a set (or a
list) with many numeric elements.

UNIT- 1 Introduction to Kotlin Programming

25 | Page Prepared by: Hardik Chavda

➏ This demonstrates how to use a lambda to remove all the even numbers in
the set.

Maps
Unlike lists or sets, maps aren’t a collection of individual values; rather, they are
a collection of pairs of values. Think of a map like a dictionary or a phone book.
Its contents are organized using a key-value pair. For each key in a map, there is
one and only one corresponding value. In a dictionary example, the key would
be the term, and its value would be the meaning or the definition of the term.

val dict = hashMapOf("foo" to 1) ➊

dict["bar"] = 2 ➋

val snapshot: MutableMap<String, Int> = dict ➌

snapshot["baz"] = 3 ➍

println(snapshot) ➎

println(dict) ➏

println(snapshot["bar"]) // prints 2 ➐

➊ Ca mutable map

➋ Adds a new key and value to the map

➌ Assigns the dict map to a new variable. This doesn’t create a new map. It only
adds an object reference to the existing map.

➍ Adds another key-value pair to the map

➎ Prints {bar = 2, baz = 3, foo=1}

➏ Also prints {bar = 2, baz = 3, foo=1}, because both snapshot and dict points to
the same map.

➐ Gets the value from the map using the key

UNIT- 1 Introduction to Kotlin Programming

26 | Page Prepared by: Hardik Chavda

Functions

Declaring functions
Functions can be written in three places. You can write them (1) inside a class,
like methods in Java—these are called member functions; (2) outside classes—
these are called top-level functions; and (3) they can be written inside other
functions—theseare called local functions. Regardless of where you put the
function, the mechanics of declaring it doesn’t change much. The basic form a
function is as follows:

fun functionName([parameters]) [:type] {
 statements
}

The function is declared using the reserved word fun followed by an identifier,
which is the function name. The function name includes the parentheses where
you can declare optional parameters. You may also declare the type of data the
function will return, but this is optional since Kotlin can infer the function’s
return type by simply looking at the function’s body declaration. What follows
is the pair of curly braces with some statements inside the function’s body.

You should name your functions following the same guidelines as if you are
writing Java methods—namely, the function name (1) shouldn’t be a reserved
word; (2) mustn’t start with a number; and (3) shouldn’t have special characters
in them. And finally, from a stylistic perspective, its name should contain a verb
or something signifying an action—as opposed to when you are naming a
variable where the name contains a noun.

Function Example

fun displayMessage(msg: String, count: Int) {
 var counter = 1
 while(counter++ <= count) {
 println(msg)
 }
}

The displayMessage() is a non-productive function; it doesn’t return anything—
notice the absence of a return keyword in the body of the function. In Java, when
a function doesn’t return anything, we still indicate that the return type is void.

UNIT- 1 Introduction to Kotlin Programming

27 | Page Prepared by: Hardik Chavda

In Kotlin, however, we don’t really have to do that since Kotlin is capable of type
inference—it can figure it out for itself. But as an academic exercise, let’s rewrite
again verbosely to completely tell the compiler what kind of return type
displayMessage() has. See the code example in below displayMessage With an

Explicit Return Type

fun displayMessage(msg: String, count: Int) : Unit {
 var counter = 1
 while(counter++ <= count) {
 println(msg)
 }
}

Default parameters

Function parameters can have default values in Kotlin, which allows the caller
(of the function) to omit some arguments on the call site. A default value can be
added to a function's signature by assigning a value to a function’s parameter.

connectToDb

fun connectToDb(hostname: String = "localhost",
 username: String = "mysql",
 password:String = "secret") {
}

Notice that “localhost”, “mysql”, and “secret” were assigned to hostname,
username, and password, respectively.connectToDb("mycomputer","root") Any
and all arguments to call the connectToDb() function can be omitted because all
of its parameters have default values. But in this case, we omitted only the third
one.

We can even call the function without passing any arguments to it, like so:
connectToDb() Kotlin’s ability to provide default arguments to functions allows
us to avoid creating function overloads. We couldn’t do this in Java, which is why
we had to resort to method overloading. Overloading functions is still possible
in Kotlin, but we’ll probably have fewer reasons to do that now, all thanks to
default parameters.

UNIT- 1 Introduction to Kotlin Programming

28 | Page Prepared by: Hardik Chavda

Named parameters

connectToDb("neptune", jupiter", "saturn")

This is a valid call because all of the parameters of connectToDb() are Strings,
and we passed three String arguments. Can you spot the problem? It isn’t clear
from the call site which one is the username, the hostname, or the password. In
Java, this problem of ambiguity was solved by a variety of workarounds,
including commenting on the call site.

connectoToDb
(/* hostname*/, "neptune, /* username*/ "jupiter", /*password*/ "saturn")

We don’t have to do this in Kotlin because we can name the argument at the call
site.

connecToDb
(hostname = "neptune", username="jupiter", password = "saturn")

It’s important to remember that when we start specifying the argument name,
we need to specify the names of all the arguments after that in order to avoid
confusion. Besides, Kotlin wouldn’t let us compile if we did that. For example, a
call like this

connectToDb(hostname = "neptune", username = "jupiter", "saturn")

isn’t allowed because once we name the second argument (username), we need
to provide the name of all the arguments that come after it. And in the example
call above, the second argument is named but not the third one. On the other
hand, a call like this

connectToDb("neptune", username = "jupiter", password = "saturn")

is allowed. It’s okay that we didn’t name the first argument, because Kotlin
would have treated this as a regular function call and use the positional value of
the argument to resolve the parameter. And then we named all the remaining
arguments.

UNIT- 1 Introduction to Kotlin Programming

29 | Page Prepared by: Hardik Chavda

Extension functions
In Java, if we needed to add functionality to a class, we could either add methods
to the class itself or extend it by inheritance. An extension function in Kotlin
allows us to add behavior to an existing class, including the ones written in Java,
without using inheritance. It essentially lets us define a function that can be
invoked as a member of the class, but the function is implemented outside the
class.

fun main() {
 var str = "Hello"
 var str2 = "welcome"
 var str3 = "hey"

 println(str3.add(str2,str))

}
//Extension Function
fun String.add(str2: String, str: String):String {
 return this + str2 + str
}

Infix functions
“Infix” notation is one of the notations used in math and logical expressions. It’s
the placement of operator between operands (e.g., a + b; the plus symbol is
“infixed” because it’s between the operands a and b). In contrast, operations
can follow “post fixed” notation where the expression is written like so (+ a b)
or they can be “post fixed,” in which our expression is written like this (a b +).

In Kotlin, member functions can be “infixed,” which allow us to write codes like

the following:

fun main() {

 var str = "Hello"
 var str2 = "welcome"
 println(str2 add str) // Infix Function

}
//Extension Function
infix fun String.add(str: String):String {
 return this + str
}

UNIT- 1 Introduction to Kotlin Programming

30 | Page Prepared by: Hardik Chavda

The only thing you need to do in order to use the say() function in an “infixed”
way is to add the infix keyword in the beginning of the function, as shown in
above. Having said that, you cannot convert every function to become an infix.

A function can be converted to infix, only if

• it’s a member function (part of a class) or an extension function, and
• it accepts exactly one parameter (only).

If you’re thinking of a loophole like, “I could probably define a single parameter
in my function and use vararg,” that won’t work. Variable arguments are not
allowed to be converted to infix functions.

By the way, you cannot call an infix function using named parameters, like this

john say msg = "Hello World" // won't work

Infix operators
The topic of operator overloading may seem a bit out of place in a chapter that
is all about functions. But in Kotlin, this topic dovetails nicely into a discussion of
infix functions because of their shared mechanics in implementation, as we will
see shortly.

Operator overloading allows us to appropriate the use of some standard
operators, like the math operators’ addition, subtraction, division,
multiplication, and modulo.

UNIT- 1 Introduction to Kotlin Programming

31 | Page Prepared by: Hardik Chavda

Object Oriented Programming:

Inheritance
Kotlin classes are final by default, as opposed to Java classes that are “open” or
non-final.

Person and Employee class

class Person {
}
class Employee : Person() {
}

In order for our code sample to compile, we have to explicitly tell Kotlin that
class Person is open, which signifies that we intend for it to be extended or
inherited. This default behavior of Kotlin classes is considered to be the correct
behavior and good practice. This effectively means that all classes and methods
that you don’t intend to be extended or overridden ought to be declared as final.
In Kotlin, this is the automatic behavior.

Below shows the Person class again, but this time, it has the open modifier,
which signifies that class Person can be extended.

Person and Employee class

open class Person {
}
class Employee : Person() {
}

The behavior of being final as a default behavior isn’t just for classes; member
functions are like that too in Kotlin. When a function is written without the open
modifier, it is final.

abstract
The abstract keyword has the same meaning in Kotlin as it does in Java. It’s
applicable to classes and functions. When you mark a class as abstract, it
becomes implicitly open as well, so you don’t need to use the open modifier, it
becomes redundant. Interfaces don’t need to be declared as abstract and open,
since they are implicitly, already, abstract and open.

UNIT- 1 Introduction to Kotlin Programming

32 | Page Prepared by: Hardik Chavda

interface
It still uses the interface keyword, and it also contains abstract function(s).
What’s remarkable about Kotlin interfaces are that they can (1) contain
properties and (2) have functions with implementations—in other words,
concrete functions. Although, Java 8 did allow for default implementations in
Java, so that last one is no longer unique to Kotlin, but still pretty useful, as we
shall see later.

class MultiFunction Implementing Fax

class MultiFunction : Fax { ➊

 override fun answer () { ➋
 }
}

➊ The colon operator is used, instead of Java’s implements keyword. The colon
is used for inheriting classes as well.

➋ We have to provide an implementation for the answer() function because it
didn’t have an implementation in the interface definition. On the other hand,
we don’t have to provide implementation for call() and print() because they have
an implementation in the interface definition.

You may also note that we are using the override keyword in this function. Its
use is necessary in order to clarify to the compiler that we don’t intend to hide
or overshadow the answer() function in the interface definition. Rather, we
intend to replace it, so it can be polymorphic. We want to provide our own
behavior for the answer() function in this class.

super
Like Java, Kotlin’s functions can call the functions of its supertype if it has an
implementation. Also, like in Java, Kotlin uses the super keyword to accomplish
this. The super keyword in Kotlin means the same as it did in Java—it’s a
reference to the instance of the supertype. To invoke a function on a supertype,
you’ll need three things:
(1) the super keyword;
(2) name of the supertype enclosed in a pair of angle brackets; and
(3) the name of function you want to invoke on the supertype. It looks
something like the code snippet here:

super<NameOfSuperType>.functionName()

UNIT- 1 Introduction to Kotlin Programming

33 | Page Prepared by: Hardik Chavda

this
The “this” keyword in Kotlin is the same as in Java, it refers to an instance of
yourself—no surprises there.

visibility modifiers
Kotlin uses almost the same keywords as Java for controlling visibility. The
keywords public, private, and protected mean exactly the same in Kotlin as they
do in Java. But the default visibility is where the difference lies.

In Kotlin, whenever you omit the visibility modifier, the default visibility is public

class Foo
class Foo {
 var bar:String = ""
 fun doSomething() {
 }
}

class Foo and its members are visible publicly. In contrast, Java’s default visibility
is package-private, meaning it’s only available to classes that are on the same
package. Kotlin doesn’t have a package-private equivalent because Kotlin
doesn’t use packages as a way to manage visibility.

Packages in Kotlin are simply a way to organize files and prevent name clashes.
In place of Java’s package-private, Kotlin introduces the internal keyword,
which means it is visible in a module.

Demonstrating Visibility Modifiers

internal open class Foo { ➊
 private fun boo() = println("boo")
 protected fun doo() = println("doo")
}

fun Foo.bar() { ➋
 333
}

fun main(args: Array<String>) {
 var fu = Foo()
 fu.bar()
}

UNIT- 1 Introduction to Kotlin Programming

34 | Page Prepared by: Hardik Chavda

➊ Class Foo is marked as internal, which makes it visible only in classes and top-
level functions that are within the same module and whose visibility are also
marked internal.

➋ This is an error. The extension function is marked as public, but the receiver
of the function (Foo) is marked as internal. Class Foo is less visible than the
extension function; hence, Kotlin doesn’t allow us.

➌ boo() is private to the class, so we can’t reach it from here.

➍ doo() is protected, we can’t reach it from here

Corrected Visibility Errors

internal open class Foo {
 internal fun boo() = println("boo")
 internal fun doo() = println("doo")
}
internal fun Foo.bar() {
 boo()
 doo()
}
fun main(args: Array<String>) {
 var fu = Foo()
 fu.bar()
}

Access Modifiers
The access modifiers of Kotlin are final, open, abstract, and override. They affect
inheritance.

