
UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

1 Prepared By: Prof. Hardik Chavda

Python History

 Python laid its foundation in the late 1980s.

 The implementation of Python was started in the December 1989 by Guido Van Ros-
sum at CWI in Netherland.

 In February 1991, van Rossum published the code (labeled version 0.9.0) to
alt.sources.

 In 1994, Python 1.0 was released with new features like: lambda, map, filter, and re-
duce.

 Python 2.0 added new features like: list comprehensions, garbage collection system.

 On December 3, 2008, Python 3.0 (also called "Py3K") was released. It was designed
to rectify fundamental flaw of the language.

 ABC programming language is said to be the predecessor of Python language which
was capable of Exception Handling and interfacing with Amoeba Operating System.

 Python is influenced by following programming languages:
o ABC language.
o Modula-3

Strengths and Weaknesses

Strengths of Python

Extensive Support Libraries

It provides large standard libraries that include the areas like string operations, In-
ternet, web service tools, operating system interfaces and protocols. Most of the highly
used programming tasks are already scripted into it that limits the length of the codes to be
written in Python.

Integration Feature

Python integrates the Enterprise Application Integration that makes it easy to devel-
op Web services by invoking COM or COBRA components. It has powerful control capabili-
ties as it calls directly through C, C++ or Java via Jython. Python also processes XML and oth-
er markup languages as it can run on all modern operating systems through same byte code.

Improved Programmer’s Productivity

The language has extensive support libraries and clean object-oriented designs that
increase two to ten fold of programmer’s productivity while using the languages like Java,
VB, Perl, C, C++ and C#.

Productivity

With its strong process integration features, unit testing framework and enhanced
control capabilities contribute towards the increased speed for most applications and prod-
uctivity of applications. It is a great option for building scalable multi-protocol network ap-
plications.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

2 Prepared By: Prof. Hardik Chavda

Weakness of Python

Difficulty in Using Other Languages

The Python lovers become so accustomed to its features and its extensive libraries,
so they face problem in learning or working on other programming languages. Python ex-
perts may see the declaring of cast “values” or variable “types”, syntactic requirements of
adding curly braces or semi colons as an onerous task.

Weak in Mobile Computing

Python has made its presence on many desktop and server platforms, but it is seen
as a weak language for mobile computing. This is the reason very few mobile applications
are built in it like Carbonnelle.

Gets Slow in Speed

Python executes with the help of an interpreter instead of the compiler, which caus-
es it to slow down because compilation and execution help it to work normally. On the oth-
er hand, it can be seen that it is fast for many web applications too.

Run-time Errors

The Python language is dynamically typed so it has many design restrictions that are
reported by some Python developers. It is even seen that it requires more testing time, and
the errors show up when the applications are finally run.

Underdeveloped Database Access Layers

As compared to the popular technologies like JDBC and ODBC, the Python’s database
access layer is found to be bit underdeveloped and primitive. However, it cannot be applied
in the enterprises that need smooth interaction of complex legacy data.

Python Versions.

Version Released Date Version Released Date

Python 1.0 January 1994 Python 3.0 December 3, 2008

Python 1.5 December 31, 1997 Python 3.1 June 27, 2009

Python 1.6 September 5, 2000 Python 3.2 February 20, 2011

Python 2.0 October 16, 2000 Python 3.3 September 29, 2012

Python 2.1 April 17, 2001 Python 3.4 March 16, 2014

Python 2.2 December 21, 2001 Python 3.5 September 13, 2015

Python 2.3 July 29, 2003 Python 3.6 December 23, 2016

Python 2.4 November 30, 2004 Python 3.7 June 27, 2018

Python 2.5 September 19, 2006

Python 2.6 October 1, 2008

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

3 Prepared By: Prof. Hardik Chavda

Installing Python and setting up Environment Variables

It is highly unlikely that your Windows system shipped with Python already installed.
Windows systems typically do not. Fortunately, installing does not involve much more than
downloading the Python installer from the python.org website and running it. Let’s take a
look at how to install Python 3 on Windows:

Step 1: Download the Python 3 Installer

1. Open a browser window and navigate to the Download page for Win-
dows at python.org.

2. Underneath the heading at the top that says Python Releases for Windows, click on
the link for the Latest Python 3 Release - Python 3.x.x.

3. Scroll to the bottom and select either Windows x86-64 executable installer for 64-bit
or Windows x86 executable installer for 32-bit.

Step 2: Run the Installer
Once you have chosen and downloaded an installer, simply run it by double-clicking
on the downloaded file. A dialog should appear that looks something like this:

Step 3: You want to be sure to check the box that says Add Python 3.x to PATH as shown to
ensure that the interpreter will be placed in your execution path.

Step 4: Then just click Install Now. That should be all there is to it. A few minutes later you
should have a working Python 3 installation on your system.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

4 Prepared By: Prof. Hardik Chavda

Executing Python from the Command Line

1. Open Command line: Start menu -> Run and type cmd
2. In cmd prompt type python
3. Python prompt will appear

IDLE

Python - IDLE

IDLE (Integrated Development and Learning Environment) is an integrated develop-
ment environment (IDE) for Python. The Python installer for Windows contains the IDLE
module by default.

IDLE can be used to execute a single statement just like Python Shell and also to
create, modify and execute Python scripts. IDLE provides a fully-featured text editor to
create Python scripts that includes features like syntax highlighting, auto completion and
smart indent. It also has a debugger with stepping and breakpoints features.

To start IDLE interactive shell, search for the IDLE icon in the start menu and double
click on it.

This will open IDLE, where you can write Python code and execute it as shown below.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

5 Prepared By: Prof. Hardik Chavda

Editing Python Files
To execute a Python script, create a new file by selecting File -> New File from the menu.

Enter multiple statements and save the file with extension .py using File -> Save. For

example, save the following code as test.py.

Now, press F5 to run the script in the editor window. The IDLE shell will show the output.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

6 Prepared By: Prof. Hardik Chavda

Getting Help

The python help function is used to display the documentation of modules, func-
tions, classes, keywords etc.
The help function has the following syntax:

help([object])

If the help function is passed without an argument, then the interactive help utility
starts up on the console.

The help() method is used for interactive use. It's recommenced to try it in your in-
terpreter when you need help to write Python program and use Python modules.

object is passed to help() (not a string)

Try these on Python shell.

>>> help(list)

>>> help(dict)

>>> help(print)

>>> help([1, 2, 3])

If string is passed as an argument, name of a module, function, class, method, keyword, or
documentation topic, and a help page is printed.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

7 Prepared By: Prof. Hardik Chavda

Dynamic Types

Python variable assignment is different from some of the popular languages like c,
c++ and java. There is no declaration of a variable, just an assignment statement.

When we declare a variable in C or alike languages, this sets aside an area of memo-
ry for holding values allowed by the data typeof the variable. The memory allocated will be
interpreted as the data type suggests. If it’s an integer variable the memory allocated will be
read as an integer and so on. When we assign or initialize it with some value, that value will
get stored at that memory location. At compile time, initial value or assigned value will be
checked. So we cannot mix types. Example: initializing a string value to an int variable is not
allowed and the program will not compile.

But Python is a dynamically typed language. It doesn’t know about the type of the
variable until the code is run. So declaration is of no use. What it does is, It stores that value
at some memory location and then binds that variable name to that memory container. And
makes the contents of the container accessible through that variable name. So the data type
does not matter. As it will get to know the type of the value at run-time.

Example
x = 6
print(type(x))
x = 'hello'
print(type(x))

Output:
<class 'int'>
<class 'str'>

Python Reserved Words

Keywords are the reserved words in Python. We cannot use a keyword as a variable
name, function name or any other identifier. They are used to define the syntax and struc-
ture of the Python language.

In Python, keywords are case sensitive. There are 33 keywords in Python 3.7. This

number can vary slightly in the course of time. All the keywords ex-
cept True, False and None are in lowercase and they must be written as it is. The list of all
the keywords is given below.

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

8 Prepared By: Prof. Hardik Chavda

Naming Conventions

1. General
 Avoid using names that are too general or too wordy. Strike a good balance between

the two.
 Bad: data_structure, my_list, info_map, dictio-

nary_for_the_purpose_of_storing_data_representing_word_definitions
 When using CamelCase names, capitalize all letters of an abbreviation (e.g.

HTTPServer)
2. Packages

 Package names should be all lower case
 When multiple words are needed, an underscore should separate them
 It is usually preferable to stick to 1 word names

3. Modules
 Module names should be all lower case
 When multiple words are needed, an underscore should separate them
 It is usually preferable to stick to 1 word names

4. Classes
 Class names should follow the UpperCaseCamelCase convention
 Python’s built-in classes, however are typically lowercase words
 Exception classes should end in “Error”

5. Global (module-level) Variables
 Global variables should be all lowercase
 Words in a global variable name should be separated by an underscore

6. Instance Variables
 Instance variable names should be all lower case
 Words in an instance variable name should be separated by an underscore
 Non-public instance variables should begin with a single underscore
 If an instance name needs to be mangled, two underscores may begin its name

7. Methods
 Method names should be all lower case
 Words in an method name should be separated by an underscore
 Non-public method should begin with a single underscore
 If a method name needs to be mangled, two underscores may begin its name

8. Method Arguments
 Instance methods should have their first argument named ‘self’.
 Class methods should have their first argument named ‘cls’

9. Functions
 Function names should be all lower case
 Words in a function name should be separated by an underscore

10. Constants
 Constant names must be fully capitalized
 Words in a constant name should be separated by an underscore

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

9 Prepared By: Prof. Hardik Chavda

Basic Syntax

By default, the Python interpreter treats a piece of text terminated by hard carriage
return (new line character) as one statement. It means each line in a Python script is a
statement. (Just as in C/C++/C#, a semicolon ; denotes the end of a statement).

Example:

msg="Hello World"
code=123
name="HardikChavda"

However, you can show the text spread over more than one lines to be a single

statement by using the backslash (\) as a continuation character. Look at the following ex-
amples:

Example: Continuation of Statement

msg="Hello Pythonista \
Welcome to Python Tutorial \
from GeetanjaliCollege"
Similarly, use the semicolon ; to write multiple statements in a single line.
Example: Multiple Statements in Single Line
msg="Hello World";code=123;name=" HardikChavda "

Indents in Python

Many times it is required to construct a block of more than one statements. For ex-
ample there are usually multiple statements that are part of the definition of a function.
There can be one or more statements in a looping construct.

Different programming languages use different techniques to define the scope and
extent of a block of statements in constructs like class, function, conditional and loop. In C,
C++, C# or Java, statements inside curly brackets { and } are treated as a block.

Python uses uniform indentation to denote a block of statements. When a block is to
be started, type the exclamation symbol (:) and press Enter. Any Python-aware editor (like
IDLE) goes to the next line leaving an additional whitespace (called indent). Subsequent
statements in the block follow the same level of indent. In order to signal the end of a block,
the whitespace is de-dented by pressing the backspace key. If your editor is not configured
for Python, you may have to ensure that the statements in a block have the same indenta-
tion level by pressing the spacebar or Tab key. The Python interpreter will throw an error if
the indentation level in the block is not same.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

10 Prepared By: Prof. Hardik Chavda

Comments

In a Python script, the symbol # indicates the start of a comment line. It is effective
till the end of the line in the editor. If # is the first character of the line, then the entire line is
a comment. It can be used also in the middle of a line. The text before it is a valid Python
expression, while the text following is treated as a comment.

Example:

this is a comment
print ("Hello World")
print ("Welcome to Python Tutorial") #this is comment but after a statement.

In Python, there is no provision to write multi-line comments, or a block comment.
(As in C#/C/C++, where multiple lines inside /* .. */ are treated as a multi-line comment).
Each line should have the # symbol at the start to be marked as a comment. Many Python
IDEs have shortcuts to mark a block of statements as a comment. In IDLE, select the block
and press Alt + 3.

A triple quoted multi-line string is also treated as a comment if it is not a docstring of

a function or a class. (The use of docstring will be explained in subsequent tutorials on Py-
thon functions.)

Example: Multi-line Comments

'''
comment1
comment2
comment3
'''
print ("Hello World")

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

11 Prepared By: Prof. Hardik Chavda

String Values

A string is a sequence of characters. A character is simply a symbol. For example, the
English language has 26 characters. Computers do not deal with characters, they deal with
numbers (binary). Even though you may see characters on your screen, internally it is stored
and manipulated as a combination of 0's and 1's.

This conversion of character to a number is called encoding, and the reverse process
is decoding. ASCII and Unicode are some of the popular encoding used.

In Python, string is a sequence of Unicode character. Unicode was introduced to in-
clude every character in all languages and bring uniformity in encoding.

Strings can be created by enclosing characters inside a single quote or double
quotes. Even triple quotes can be used in Python but generally used to represent multiline
strings and docstrings

Example

all of the following are equivalent
my_string = 'Hello'
print(my_string)

my_string = "Hello"
print(my_string)

my_string = '''Hello'''
print(my_string)

triple quotes string can extend multiple lines
my_string = """Hello, welcome to
 the world of Python"""
print(my_string)

Output

Hello
Hello
Hello
Hello, welcome to
 the world of Python

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

12 Prepared By: Prof. Hardik Chavda

String Operations
Multiline Strings

You can assign a multiline string to a variable by using three quotes:

You can use three double quotes:
Example

a = """Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua."""

Or three single quotes:
Example

a = '''Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.'''

In python, strings are treated as the sequence of strings which means that python

doesn't support the character data type instead a single character written as 'p' is treated as
the string of length 1.

Python provides various in-built methods that are used for string handling. Many String fun

Method Description

capitalize() It capitalizes the first character of the String. This function is depre-
cated in python3

casefold() It returns a version of s suitable for case-less comparisons.

center(width ,fillchar) It returns a space padded string with the original string centred with
equal number of left and right spaces.

count(string,begin,end) It counts the number of occurrences of a substring in a String between
begin and end index.

decode(encoding = 'UTF8', errors =
'strict')

Decodes the string using codec registered for encoding.

encode() Encode S using the codec registered for encoding. Default encoding is
'utf-8'.

endswith(suffix
,begin=0,end=len(string))

It returns a Boolean value if the string terminates with given suffix be-
tween begin and end.

expandtabs(tabsize = 8) It defines tabs in string to multiple spaces. The default space value is 8.

find(substring ,beginIndex, endIndex) It returns the index value of the string where substring is found be-
tween begin index and end index.

format(value) It returns a formatted version of S, using the passed value.

index(subsring, beginIndex, endIn-
dex)

It throws an exception if string is not found. It works same as find()
method.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

13 Prepared By: Prof. Hardik Chavda

isalnum() It returns true if the characters in the string are alphanumeric i.e., al-
phabets or numbers and there is at least 1 character. Otherwise, it
returns false.

isalpha() It returns true if all the characters are alphabets and there is at least
one character, otherwise False.

isdecimal() It returns true if all the characters of the string are decimals.

isdigit() It returns true if all the characters are digits and there is at least one
character, otherwise False.

isidentifier() It returns true if the string is the valid identifier.

islower() It returns true if the characters of a string are in lower case, otherwise
false.

isnumeric() It returns true if the string contains only numeric characters.

isprintable() It returns true if all the characters of s are printable or s is empty, false
otherwise.

isupper() It returns false if characters of a string are in Upper case, otherwise
False.

isspace() It returns true if the characters of a string are white-space, otherwise
false.

istitle() It returns true if the string is titled properly and false otherwise. A title
string is the one in which the first character is upper-case whereas the
other characters are lower-case.

isupper() It returns true if all the characters of the string(if exists) is true other-
wise it returns false.

join(seq) It merges the strings representation of the given sequence.

len(string) It returns the length of a string.

ljust(width[,fillchar]) It returns the space padded strings with the original string left justified
to the given width.

lower() It converts all the characters of a string to Lower case.

lstrip() It removes all leading whitespaces of a string and can also be used to
remove particular character from leading.

partition() It searches for the separator sep in S, and returns the part before it,
the separator itself, and the part after it. If the separator is not found,
return S and two empty strings.

maketrans() It returns a translation table to be used in translate function.

replace(old,new[,count]) It replaces the old sequence of characters with the new sequence. The
max characters are replaced if max is given.

rfind(str,beg=0,end=len(str)) It is similar to find but it traverses the string in backward direction.

rindex(str,beg=0,end=len(str)) It is same as index but it traverses the string in backward direction.

rjust(width,[,fillchar]) Returns a space padded string having original string right justified to
the number of characters specified.

rstrip() It removes all trailing whitespace of a string and can also be used to
remove particular character from trailing.

rsplit(sep=None, maxsplit = -1) It is same as split() but it processes the string from the backward direc-
tion. It returns the list of words in the string. If Separator is not speci-
fied then the string splits according to the white-space.

split(str,num=string.count(str)) Splits the string according to the delimiter str. The string splits accord-
ing to the space if the delimiter is not provided. It returns the list of
substring concatenated with the delimiter.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

14 Prepared By: Prof. Hardik Chavda

splitlines(num=string.count('\n')) It returns the list of strings at each line with newline removed.

startswith(str,beg=0,end=len(str)) It returns a Boolean value if the string starts with given str between
begin and end.

strip([chars]) It is used to perform lstrip() and rstrip() on the string.

swapcase() It inverts case of all characters in a string.

title() It is used to convert the string into the title-case i.e., The
string meEruT will be converted to Meerut.

translate(table,deletechars = '') It translates the string according to the translation table passed in the
function .

upper() It converts all the characters of a string to Upper Case.

zfill(width) Returns original string leftpadded with zeros to a total of width cha-
racters; intended for numbers, zfill() retains any sign given (less one
zero).

The Format Method

str.format() is one of the string formatting methods in Python3, which allows mul-
tiple substitutions and value formatting. This method lets us concatenate elements within a
string through positional formatting.

Formatters work by putting in one or more replacement fields and placeholders de-
fined by a pair of curly braces { } into a string and calling the str.format(). The value we wish
to put into the placeholders and concatenate with the string passed as parameters into the
format function.

Syntax : { } .format(value)

Parameters :
(value) : Can be an integer, floating point numeric constant, string, characters or even va-
riables.

Returntype : Returns a formatted string with the value passed as parameter in the place-
holder position.

Parameter Description

value A value of any format

format The format you want to format the value into.
Legal values:
'<' - Left aligns the result (within the available space)
'>' - Right aligns the result (within the available space)
'^' - Center aligns the result (within the available space)
'=' - Places the sign to the left most position
'+' - Use a plus sign to indicate if the result is positive or negative

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

15 Prepared By: Prof. Hardik Chavda

'-' - Use a minus sign for negative values only
' ' - Use a leading space for positive numbers
',' - Use a comma as a thousand separator
'_' - Use a underscore as a thousand separator
'b' - Binary format
'c' - Converts the value into the corresponding unicode character
'd' - Decimal format
'e' - Scientific format, with a lower case e
'E' - Scientific format, with an upper case E
'f' - Fix point number format
'F' - Fix point number format, upper case
'g' - General format
'G' - General format (using a upper case E for scientific notations)
'o' - Octal format
'x' - Hex format, lower case
'X' - Hex format, upper case
'n' - Number format
'%' - Percentage format

String Slices

The slice() function returns a slice object.A slice object is used to specify how to slice
a sequence. You can specify where to start the slicing, and where to end. You can also speci-
fy the step, which allows you to e.g. slice only every other item.

Syntax
slice(start, end, step)

Parameter Values
Parameter Description

start Optional. An integer number specifying at which position to start the slicing. Default is 0

end An integer number specifying at which position to end the slicing

step Optional. An integer number specifying the step of the slicing. Default is 1

Create a tuple and a slice object. Use the step parameter to return every third item:

a = ("a", "b", "c", "d", "e", "f", "g", "h")
x = slice(0, 8, 3)
print(a[x])

Output
('a', 'd', 'g')

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

16 Prepared By: Prof. Hardik Chavda

String Operators
Operator Description Operation

+ Concatenates (joins) string1 and string2 string1 +
string2

* Repeats the string for as many times as specified by x string * x

[] Slice — Returns the character from the index provided at x. string[x]

[:] Range Slice — Returns the characters from the range provided at x:y. string[x:y]

in Membership — Returns True if x exists in the string. Can be multiple cha-
racters.

x in string

not in Membership — Returns True if x does not exist in the string. Can be mul-
tiple characters.

x not in string

r Suppresses an escape sequence (\x) so that it is actually rendered. In other
words, it prevents the escape character from being an escape character.

r"\x"

% Performs string formatting. It can be used as a placeholder for another
value to be inserted into the string. The % symbol is a prefix to another
character (x) which defines the type of value to be inserted. The value to
be inserted is listed at the end of the string after another % character.

Character Description

%c Character.

%s String conversion via str() prior to formatting.

%i Signed decimal integer.

%d Signed decimal integer.

%u Unsigned decimal integer.

%o Octal integer.

%x Hexadecimal integer using lowercase letters.

%X Hexadecimal integer using uppercase letters.

%e Exponential notation with lowercase e.

%E Exponential notation with uppercase e.

%f Floating point real number.

%g The shorter of %f and %e.

%G The shorter of %f and %E.

%x

Numeric Data Types

In Python, number data types are used to store numeric values. There are four different
numerical types in Python:

1. int (plain integers): this one is pretty standard -- plain integers are just positive or
negative whole numbers.

2. long (long integers): long integers are integers of infinite size. They look just like
plain integers except they're followed by the letter "L" (ex: 150L).

3. float (floating point real values): floats represent real numbers, but are written with
decimal points (or scientific notaion) to divide the whole number into fractional
parts.

4. complex (complex numbers): represented by the formula a + bJ, where a and b are
floats, and J is the square root of -1 (the result of which is an imaginary number).
Complex numbers are used sparingly in Python.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

17 Prepared By: Prof. Hardik Chavda

Applying the function call operator () to a numeric type creates an instance of that type.
For example: calling int(x) will convert x to a plain integer. This can also be used with the
long, float, and complex types.

Conversions

The process of converting the value of one data type (integer, string, float, etc.) to
another data type is called type conversion. Python has two types of type conversion.

1. Implicit Type Conversion
2. Explicit Type Conversion

Implicit Type Conversion:

In Implicit type conversion, Python automatically converts one data type to another
data type. This process doesn't need any user involvement.

Example

num_int = 123
num_flo = 1.23
num_new = num_int + num_flo
print("datatype of num_int:",type(num_int))
print("datatype of num_flo:",type(num_flo))
print("Value of num_new:",num_new)
print("datatype of num_new:",type(num_new))

Output

datatype of num_int: <class 'int'>
datatype of num_flo: <class 'float'>
Value of num_new: 124.23
datatype of num_new: <class 'float'>

Example

num_int = 123
num_str = "456"
print("Data type of num_int:",type(num_int))
print("Data type of num_str:",type(num_str))
print(num_int+num_str)

Output

Data type of num_int: <class 'int'>
Data type of num_str: <class 'str'>
Traceback (most recent call last):
 File "python", line 7, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

In the above program,
 We add two variable num_int and num_str.
 As we can see from the output, we got typeerror. Python is not able use Implicit

Conversion in such condition.
 However Python has the solution for this type of situation which is know as Explicit

Conversion.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

18 Prepared By: Prof. Hardik Chavda

Explicit Type Conversion:
In Explicit Type Conversion, users convert the data type of an object to required data

type. We use the predefined functions like int(), float(), str(), etc to perform explicit type
conversion.

This type conversion is also called typecasting because the user casts (change) the
data type of the objects. Typecasting can be done by assigning the required data type func-
tion to the expression.
Example

num_int = 123
num_str = "456"
print("Data type of num_int:",type(num_int))
print("Data type of num_str before Type Casting:",type(num_str))
num_str = int(num_str)
print("Data type of num_str after Type Casting:",type(num_str))
num_sum = num_int + num_str
print("Sum of num_int and num_str:",num_sum)
print("Data type of the sum:",type(num_sum))

Output

Data type of num_int: <class 'int'>
Data type of num_str before Type Casting: <class 'str'>
Data type of num_str after Type Casting: <class 'int'>
Sum of num_int and num_str: 579
Data type of the sum: <class 'int'>

In above program,

 We add num_str and num_int variable.
 We converted num_str from string(higher) to integer(lower) type using int() function

to perform the addition.
 After converting num_str to a integer value Python is able to add these two variable.
 We got the num_sum value and data type to be integer.

Key Points to Remember:

1. Type Conversion is the conversion of object from one data type to another data
type.

2. Implicit Type Conversion is automatically performed by the Python interpreter.
3. Python avoids the loss of data in Implicit Type Conversion.
4. Explicit Type Conversion is also called Type Casting, the data types of object are con-

verted using predefined function by user.
5. In Type Casting loss of data may occur as we enforce the object to specific data type.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

19 Prepared By: Prof. Hardik Chavda

Simple Input and Output
Python provides numerous built-in functions that are readily available to us at the

Python prompt.
Some of the functions like input() and print() are widely used for standard input and

output operations respectively.

Python Output Using print() function.
We use the print() function to output data to the standard output device (screen).

We can also output data to a file, but this will be discussed later. An example use is given
below.

print('This sentence is output to the screen')
Output: This sentence is output to the screen
a = 5
print('The value of a is', a)
Output: The value of a is 5

In the second print() statement, we can notice that a space was added between

the string and the value of variable a.This is by default, but we can change it. The actual syn-
tax of the print() function is

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

Here, objects is the value(s) to be printed. The sep separator is used between the

values. It defaults into a space character. After all values are printed, end is printed. It de-
faults into a new line. The file is the object where the values are printed and its default value
is sys.stdout(screen).
Example

print(1,2,3,4)
Output: 1 2 3 4
print(1,2,3,4,sep='*')
Output: 1*2*3*4
print(1,2,3,4,sep='#',end='&')
Output: 1#2#3#4&

Python Input
Up till now, our programs were static. The value of variables were defined or hard

coded into the source code. To allow flexibility we might want to take the input from the
user. In Python, we have the input() function to allow this. The syntax for input() is
input([prompt])

where prompt is the string we wish to display on the screen. It is optional.

>>> num = input('Enter a number: ')
Enter a number: 10
>>> num
'10'

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

20 Prepared By: Prof. Hardik Chavda

Here, we can see that the entered value 10 is a string, not a number. To convert this into
a number we can use int() or float() functions.

>>> int('10')
10
>>> float('10')
10.0

This same operation can be performed using the eval() function. But it takes it further. It

can evaluate even expressions, provided the input is a string

>>> int('2+3')
Traceback (most recent call last):
 File "<string>", line 301, in runcode
 File "<interactive input>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '2+3'
>>> eval('2+3')
5

Control Flow and Syntax

A program’s control flow is the order in which the program’s code executes. The
control flow of a Python program is regulated by conditional statements, loops, and function

calls.

if Statement

Often, you need to execute some statements only if some condition holds, or choose
statements to execute depending on several mutually exclusive conditions. The Python
compound statement if, which uses if, elif, andelse clauses, lets you conditionally execute
blocks of statements. Here’s the syntax for the if statement:

if expression:
statement(s)
elif expression:
statement(s)
elif expression:
statement(s)
...
else:
statement(s)

The elif and else clauses are optional. Note that unlike some languages, Python does

not have a switch statement, so you must use if, elif, and elsefor all conditional processing.
Here’s a typical if statement:

if x < 0: print "x is negative"
elif x % 2: print "x is positive and odd"
else: print "x is even and non-negative"

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

21 Prepared By: Prof. Hardik Chavda

The while Statement
The while statement in Python supports repeated execution of a statement or block

of statements that is controlled by a conditional expression. Here’s the syntax for
the while statement:

while expression:
 statement(s)

A while statement can also include an else clause and break and continue state-
ments, as we’ll discuss shortly. Here’s a typical while statement:

count = 0
while x > 0:
 x = x // 2 # truncating division
 count += 1
print "The approximate log2 is", count

First, expression, which is known as the loop condition, is evaluated. If condition is

false, while statement ends. If the loop condition is satisfied, the statement or statements
that comprise the loop body are executed. When the loop body finishes executing, the loop
condition is evaluated again, to see if another iteration should be performed. This process
continues until the loop condition is false, at which point the while statement ends.

The loop body should contain code that eventually makes the loop condition false, or

the loop will never end unless an exception is raised or the loop body executes
a break statement. A loop that is in a function’s body also ends if a return statement ex-
ecutes in the loop body, as the whole function ends in this case.

The for Statement

The for statement in Python supports repeated execution of a statement or block of
statements that is controlled by an iterable expression. Here’s the syntax for
the for statement:

for target in iterable:
 statement(s)

Note that the in keyword is part of the syntax of the for statement and is functionally
unrelated to the in operator used for membership testing. A forstatement can also include
an else clause and break and continuestatements, as we’ll discuss shortly.

Here’s a typical for statement:

for letter in "ciao":
 print "give me a", letter, "..."

iterable may be any Python expression suitable as an argument to built-in func-

tion iter, which returns an iterator object (explained in detail in the next section). target is
normally an identifier that names the control variable of the loop; the for statement succes-
sively rebinds this variable to each item of the iterator, in order. The statement or state-

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

22 Prepared By: Prof. Hardik Chavda

ments that comprise the loopbody execute once for each item in iterable (unless the loop
ends because an exception is raised or a break or return statement is executed).
range

Looping over a sequence of integers is a common task, so Python provides built-in
functions range and xrange to generate and return integer sequences.

for i in xrange(n):
 statement(s)

Range(x) returns a list whose items are consecutive integers from 0(included) up
to x (excluded). range(x,y) returns a list whose items are consecutive integers
from x (included) up to y (excluded). The result is the empty list if x is greater than or equal
to y. range(x,y,step) returns a list of integers from x (included) up to y (excluded), such that
the difference between each two adjacent items in the list is step. If step is less
than 0, range counts down from x to y. range returns the empty list when x is greater than
or equal to y and step is greater than 0, or when x is less than or equal to y and step is less
than 0. If step equals 0, range raises an exception.

The break Statement

The break statement is allowed only inside a loop body. When break executes, the
loop terminates. If a loop is nested inside other loops, break terminates only the innermost
nested loop. In practical use, a break statement is usually inside some clause of
an if statement in the loop body so that it executes conditionally.

The continue Statement

The continue statement is allowed only inside a loop body. When continue executes,
the current iteration of the loop body terminates, and execution continues with the next
iteration of the loop. In practical use, a continuestatement is usually inside some clause of
an if statement in the loop body so that it executes conditionally.

The pass Statement

The body of a Python compound statement cannot be empt. It must contain at least
one statement. The pass statement, which performs no action, can be used as a placeholder
when a statement is syntactically required but you have nothing specific to do.

Relational Operators

Relational operators are used to establish some sort of relationship between the two
operands. Some of the relevant examples could be less than, greater than or equal
to operators. Python language is capable of understanding these types of operators and ac-
cordingly return the output, which can be either True or False.

Oper. Description Example

== If the values of two operands are equal, then the condition becomes
true.

(a == b) is not true.

!= If values of two operands are not equal, then condition becomes true. (a != b) is true.

<> If values of two operands are not equal, then condition becomes true. (a <> b) is true. This is
similar to != operator.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

23 Prepared By: Prof. Hardik Chavda

> If the value of left operand is greater than the value of right operand,
then condition becomes true.

(a > b) is not true.

< If the value of left operand is less than the value of right operand, then
condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of
right operand, then condition becomes true.

(a >= b) is not true.

<= If the value of left operand is less than or equal to the value of right
operand, then condition becomes true.

(a <= b) is true.

Logical Operators

Logical operators, as the name suggests are used in logical expressions where
the operands are either True or False. The operands in a logical expression can be expres-
sions which return True or False upon evaluation. There are three basic types of logical op-
erators:

Operator Description Example

and Logical
AND

If both the operands are true then condition becomes true. (a and b) is true.

or Logical OR If any of the two operands are non-zero then condition be-
comes true.

(a or b) is true.

not Logical
NOT

Used to reverse the logical state of its operand. Not(a and b) is
false.

Bit Wise Operators
Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60;

and b = 13; Now in binary format they will be as follows −

a = 0011 1100
b = 0000 1101

a&b = 0000 1100
a|b = 0011 1101
a^b = 0011 0001
~a = 1100 0011

There are following Bitwise operators supported by Python language.
Operator Description Example

& Binary AND Operator copies a bit to the result if it exists
in both operands

(a & b) (means 0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61 (means 0011 1101)

^ Binary XOR It copies the bit if it is set in one operand
but not both.

(a ^ b) = 49 (means 0011 0001)

~ Binary Ones Com-
plement

It is unary and has the effect of 'flipping'
bits.

(~a) = -61 (means 1100 0011 in 2's comple-
ment form due to a signed binary number.

<< Binary Left Shift The left operands value is moved left by the
number of bits specified by the right ope-
rand.

a << 2 = 240 (means 1111 0000)

>> Binary Right Shift The left operands value is moved right by
the number of bits specified by the right
operand.

a >> 2 = 15 (means 0000 1111)

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

24 Prepared By: Prof. Hardik Chavda

Lists

Python has a great built-in list type named "list". List literals are written within
square brackets []. Lists work similarly to strings -- use the len() function and square brack-
ets [] to access data, with the first element at index 0.

colors = ['red', 'blue', 'green']
 print colors[0] ## red
 print colors[2] ## green
 print len(colors) ## 3

Assignment with an = on lists does not make a copy. Instead, assignment makes the

two variables point to the one list in memory.

b = colors ## Does not copy the list

The "empty list" is just an empty pair of brackets []. The '+' works to append two

lists, so [1, 2] + [3, 4] yields [1, 2, 3, 4] (this is just like + with strings).

List Methods

Here are some other common list methods.
 list.append(elem) -- adds a single element to the end of the list. Common error: does

not return the new list, just modifies the original.
 list.insert(index, elem) -- inserts the element at the given index, shifting elements to

the right.
 list.extend(list2) adds the elements in list2 to the end of the list. Using + or += on a

list is similar to using extend().
 list.index(elem) -- searches for the given element from the start of the list and re-

turns its index. Throws a ValueError if the element does not appear (use "in" to
check without a ValueError).

 list.remove(elem) -- searches for the first instance of the given element and removes
it (throws ValueError if not present)

 list.sort() -- sorts the list in place (does not return it). (The sorted() function shown
later is preferred.)

 list.reverse() -- reverses the list in place (does not return it)
 list.pop(index) -- removes and returns the element at the given index. Returns the

rightmost element if index is omitted (roughly the opposite of append()).

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

25 Prepared By: Prof. Hardik Chavda

Notice that these are *methods* on a list object, while len() is a function that takes
the list (or string or whatever) as an argument.

list = ['larry', 'curly', 'moe']
list.append('shemp') ## append elem at end
list.insert(0, 'xxx') ## insert elem at index 0
list.extend(['yyy', 'zzz']) ## add list of elems at end
print list ## ['xxx', 'larry', 'curly', 'moe', 'shemp', 'yyy', 'zzz']
print list.index('curly') ## 2
list.remove('curly') ## search and remove that element
list.pop(1) ## removes and returns 'larry'
print list ## ['xxx', 'moe', 'shemp', 'yyy', 'zzz']

Common error: note that the above methods do not *return* the modified list, they just
modify the original list.

 list = [1, 2, 3]
 print list.append(4) ## NO, does not work, append() returns None
 ## Correct pattern:
 list.append(4)
 print list ## [1, 2, 3, 4]

List Build Up

One common pattern is to start a list a the empty list [], then use append() or ex-
tend() to add elements to it:

 list = [] ## Start as the empty list
 list.append('a') ## Use append() to add elements
 list.append('b')

List Slices

Slices work on lists just as with strings, and can also be used to change sub-parts of
the list.

 list = ['a', 'b', 'c', 'd']
 print list[1:-1] ## ['b', 'c']
 list[0:2] = 'z' ## replace ['a', 'b'] with ['z']
 print list ## ['z', 'c', 'd']

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

26 Prepared By: Prof. Hardik Chavda

Tuples

A tuple is a fixed size grouping of elements, such as an (x, y) co-ordinate. Tuples are
like lists, except they are immutable and do not change size (tuples are not strictly immuta-
ble since one of the contained elements could be mutable). Tuples play a sort of "struct"
role in Python -- a convenient way to pass around a little logical, fixed size bundle of values.
A function that needs to return multiple values can just return a tuple of the values. For ex-
ample, if I wanted to have a list of 3-d coordinates, the natural python representation would
be a list of tuples, where each tuple is size 3 holding one (x, y, z) group.

To create a tuple, just list the values within parenthesis separated by commas. The
"empty" tuple is just an empty pair of parenthesis. Accessing the elements in a tuple is just
like a list -- len(), [], for, in, etc. all work the same.

tuple = (1, 2, 'hi')
 print len(tuple) ## 3
 print tuple[2] ## hi
 tuple[2] = 'bye' ## NO, tuples cannot be changed
 tuple = (1, 2, 'bye') ## this works

To create a size-1 tuple, the lone element must be followed by a comma.

 tuple = ('hi',) ## size-1 tuple

It's a funny case in the syntax, but the comma is necessary to distinguish the tuple
from the ordinary case of putting an expression in parentheses. In some cases you can omit
the parenthesis and Python will see from the commas that you intend a tuple.

Assigning a tuple to an identically sized tuple of variable names assigns all the cor-
responding values. If the tuples are not the same size, it throws an error. This feature works
for lists too.

 (x, y, z) = (42, 13, "hike")
 print z ## hike
 (err_string, err_code) = Foo() ## Foo() returns a length-2 tuple

Sets

The set in python can be defined as the unordered collection of various items en-
closed within the curly braces. The elements of the set can not be duplicate. The elements
of the python set must be immutable.

Unlike other collections in python, there is no index attached to the elements of the
set, i.e., we cannot directly access any element of the set by the index. However, we can
print them all together or we can get the list of elements by looping through the set.

Creating a set

The set can be created by enclosing the comma separated items with the curly brac-
es. Python also provides the set method which can be used to create the set by the passed
sequence.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

27 Prepared By: Prof. Hardik Chavda

Example 1: using curly braces

Days = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sun
day"}
print(Days)
print(type(Days))
print("looping through the set elements ... ")
for i in Days:
print(i)

Output:

{'Friday', 'Tuesday', 'Monday', 'Saturday', 'Thursday', 'Sunday', 'Wednesday'}
looping through the set elements ...
Friday
Tuesday
Monday
Saturday
Thursday
Sunday
Wednesday

Example : using set() method

Days = set(["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "S
unday"])
print(Days)
print(type(Days))
print("looping through the set elements ... ")
for i in Days:
print(i)

Output:

{'Friday', 'Wednesday', 'Thursday', 'Saturday', 'Monday', 'Tuesday', 'Sunday'}
looping through the set elements ...
Friday
Wednesday
Thursday
Saturday
Monday
Tuesday
Sunday

Python Set operations

In the previous example, we have discussed about how the set is created in python.
However, we can perform various mathematical operations on python sets like union, inter-
section, difference, etc.
Adding items to the set
Python provides the add() method which can be used to add some particular item to the set.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

28 Prepared By: Prof. Hardik Chavda

Consider the following example.
Example:

Months = set(["January","February", "March", "April", "May", "June"])
print("\nprinting the original set ... ")
print(Months)
print("\nAdding other months to the set...");
Months.add("July");
Months.add("August");
print("\nPrinting the modified set...");
print(Months)
print("\nlooping through the set elements ... ")
for i in Months:
print(i)

Output:

printing the original set ...
{'February', 'May', 'April', 'March', 'June', 'January'}
Adding other months to the set...
Printing the modified set...
{'February', 'July', 'May', 'April', 'March', 'August', 'June', 'January'}
looping through the set elements ...
February
July
May
April
March
August
June
January
To add more than one item in the set, Python provides the update() method.

Example

Months = set(["January","February", "March", "April", "May", "June"])
print("\nprinting the original set ... ")
print(Months)
print("\nupdating the original set ... ")
Months.update(["July","August","September","October"]);
print("\nprinting the modified set ... ")
print(Months);

Output:

printing the original set ...
{'January', 'February', 'April', 'May', 'June', 'March'}
updating the original set ...
printing the modified set ...
{'January', 'February', 'April', 'August', 'October', 'May', 'June', 'July', 'September',
'March'}

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

29 Prepared By: Prof. Hardik Chavda

Removing items from the set
Python provides discard() method which can be used to remove the items from the

set.
Example

Months = set(["January","February", "March", "April", "May", "June"])
print("\nprinting the original set ... ")
print(Months)
print("\nRemoving some months from the set...");
Months.discard("January");
Months.discard("May");
print("\nPrinting the modified set...");
print(Months)
print("\nlooping through the set elements ... ")
for i in Months:
print(i)

Output:

printing the original set ...
{'February', 'January', 'March', 'April', 'June', 'May'}
Removing some months from the set...
Printing the modified set...
{'February', 'March', 'April', 'June'}
looping through the set elements ...
February
March
April
June

Python also provide the remove() method to remove the items from the set. Consid-

er the following example to remove the items using remove() method.

Example

Months = set(["January","February", "March", "April", "May", "June"])
print("\nprinting the original set ... ")
print(Months)
print("\nRemoving some months from the set...");
Months.remove("January");
Months.remove("May");
print("\nPrinting the modified set...");
print(Months)

Output:

printing the original set ...
{'February', 'June', 'April', 'May', 'January', 'March'}
Removing some months from the set...
Printing the modified set...
{'February', 'June', 'April', 'March'}

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

30 Prepared By: Prof. Hardik Chavda

We can also use the pop() method to remove the item. However, this method will
always remove the last item.
Consider the following example to remove the last item from the set.

Months = set(["January","February", "March", "April", "May", "June"])
print("\nprinting the original set ... ")
print(Months)
print("\nRemoving some months from the set...");
Months.pop();
Months.pop();
print("\nPrinting the modified set...");
print(Months)

Output:

printing the original set ...
{'June', 'January', 'May', 'April', 'February', 'March'}
Removing some months from the set...
Printing the modified set...
{'May', 'April', 'February', 'March'}

Python provides the clear() method to remove all the items from the set.

Months = set(["January","February", "March", "April", "May", "June"])
print("\nprinting the original set ... ")
print(Months)
print("\nRemoving all the items from the set...");
Months.clear()
print("\nPrinting the modified set...")
print(Months)

Output:

printing the original set ...
{'January', 'May', 'June', 'April', 'March', 'February'}
Removing all the items from the set...
Printing the modified set...
set()

Difference between discard() and remove()

Despite the fact that discard() and remove() method both perform the same task,
There is one main difference between discard() and remove().

If the key to be deleted from the set using discard() doesn't exist in the set, the py-

thon will not give the error. The program maintains its control flow.

On the other hand, if the item to be deleted from the set using remove() doesn't ex-

ist in the set, the python will give the error.
Consider the following example.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

31 Prepared By: Prof. Hardik Chavda

Example

Months = set(["January","February", "March", "April", "May", "June"])
print("\nprinting the original set ... ")
print(Months)
print("\nRemoving items through discard() method...");
Months.discard("Feb"); #will not give an error although the key feb is not available in
 the set
print("\nprinting the modified set...")
print(Months)
print("\nRemoving items through remove() method...");
Months.remove("Jan") #will give an error as the key jan is not available in the set.
print("\nPrinting the modified set...")
print(Months)

Output:

printing the original set ...
{'March', 'January', 'April', 'June', 'February', 'May'}
Removing items through discard() method...
printing the modified set...
{'March', 'January', 'April', 'June', 'February', 'May'}

Removing items through remove() method...

Traceback (most recent call last):
 File "set.py", line 9, in
 Months.remove("Jan")
KeyError: 'Jan'

Union of two Sets
The union of two sets are calculated by using the or (|) operator. The union of the

two sets contains the all the items that are present in both the sets.

Consider the following example to calculate the union of two sets.
Example : using union | operator

Days1 = {"Monday","Tuesday","Wednesday","Thursday"}
Days2 = {"Friday","Saturday","Sunday"}
print(Days1|Days2) #printing the union of the sets

Output:

{'Friday', 'Sunday', 'Saturday', 'Tuesday', 'Wednesday', 'Monday', 'Thursday'}

Python also provides the union() method which can also be used to calculate the un-

ion of two sets. Consider the following example.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

32 Prepared By: Prof. Hardik Chavda

Example : using union() method

Days1 = {"Monday","Tuesday","Wednesday","Thursday"}
Days2 = {"Friday","Saturday","Sunday"}
print(Days1.union(Days2)) #printing the union of the sets

Output:

{'Friday', 'Monday', 'Tuesday', 'Thursday', 'Wednesday', 'Sunday', 'Saturday'}

Intersection of two sets

The & (intersection) operator is used to calculate the intersection of the two sets in
python. The intersection of the two sets are given as the set of the elements that common
in both sets.

Consider the following example.
Example : using & operator

set1 = {"Ayush","John", "David", "Martin"}
set2 = {"Steve","Milan","David", "Martin"}
print(set1&set2) #prints the intersection of the two sets

Output: {'Martin', 'David'}

Example : using intersection() method

set1 = {"Ayush","John", "David", "Martin"}
set2 = {"Steave","Milan","David", "Martin"}
print(set1.intersection(set2)) #prints the intersection of the two sets

Output: {'Martin', 'David'}

Dictionaries

Python's efficient key/value hash table structure is called a "dict". The contents of a
dict can be written as a series of key:value pairs within braces { }, e.g. dict = {key1:value1,
key2:value2, ... }. The "empty dict" is just an empty pair of curly braces {}.

Looking up or setting a value in a dict uses square brackets, e.g. dict['foo'] looks up
the value under the key 'foo'. Strings, numbers, and tuples work as keys, and any type can
be a value. Other types may or may not work correctly as keys (strings and tuples work
cleanly since they are immutable). Looking up a value which is not in the dict throws a
KeyError -- use "in" to check if the key is in the dict, or use dict.get(key) which returns the
value or None if the key is not present (or get(key, not-found) allows you to specify what
value to return in the not-found case).

Can build up a dict by starting with the the empty dict {}
and storing key/value pairs into the dict like this:
dict[key] = value-for-that-key
dict = {}
dict['a'] = 'alpha'
dict['g'] = 'gamma'

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

33 Prepared By: Prof. Hardik Chavda

dict['o'] = 'omega'
print dict ## {'a': 'alpha', 'o': 'omega', 'g': 'gamma'}
print dict['a'] ## Simple lookup, returns 'alpha'
dict['a'] = 6 ## Put new key/value into dict
'a' in dict ## True
print dict['z'] ## Throws KeyError
if 'z' in dict: print dict['z'] ## Avoid KeyError
print dict.get('z') ## None (instead of KeyError)

Dict Formatting

The % operator works conveniently to substitute values from a dict into a string by name:

 hash = {}
 hash['word'] = 'garfield'
 hash['count'] = 42
 s = 'I want %(count)d copies of %(word)s' % hash # %d for int, %s for string
 # 'I want 42 copies of garfield'

Del
The "del" operator does deletions. In the simplest case, it can remove the definition

of a variable, as if that variable had not been defined. Del can also be used on list elements
or slices to delete that part of the list and to delete entries from a dictionary.

 var = 6
 del var # var no more!
 list = ['a', 'b', 'c', 'd']
 del list[0] ## Delete first element
 del list[-2:] ## Delete last two elements
 print list ## ['b']
 dict = {'a':1, 'b':2, 'c':3}
 del dict['b'] ## Delete 'b' entry
 print dict ## {'a':1, 'c':3}

Sorting Dictionaries

The dict (dictionary) class object in Python is a very versatile and useful container
type, able to store a collection of values and retrieve them via keys. The values can be ob-
jects of any type (dictionaries can even be nested with other dictionaries) and the keys can
be any object so long as it's hashable, meaning basically that it is immutable (so strings are
not the only valid keys, but mutable objects like lists can never be used as keys). Unlike Py-

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

34 Prepared By: Prof. Hardik Chavda

thon lists or tuples, the key and value pairs in dict objects are not in any particular order,
which means we can have a dict like this:

numbers = {'first': 1, 'second': 2, 'third': 3, 'Fourth': 4}

Although the key-value pairs are in a certain order in the instantiation statement, by
calling the list method on it (which will create a list from its keys) we can easily see they
aren't stored in that order:

>>> list(numbers)
['second', 'Fourth', 'third', 'first']

Sorting Python dictionaries by Keys
If we want to order or sort the dictionary objects by their keys, the simplest way to

do so is by Python's built-in sorted method, which will take any iterable and return a list of
the values which has been sorted (in ascending order by default). There is no class method
for sorting dictionaries as there is for lists, however the sorted method works the same ex-
act way. Here's what it does with our dictionary:

This is the same as calling sorted(numbers.keys())
>>> sorted(numbers)
['Fourth', 'first', 'second', 'third']

We can see this method has given us a list of the keys in ascending order, and in al-
most alphabetical order, depending on what we define as "alphabetical." Also notice that
we sorted its list of keys by its keys — if we want to sort its list of values by its keys, or its list
of keys by its values, we'd have to change the way we use the sorted method. We'll look at
these different aspects of sorted in a bit.

Sorting Python dictionaries by Values

In the same way as we did with the keys, we can use sorted to sort the Python dic-
tionary by its values:

We have to call numbers.values() here
>>> sorted(numbers.values())
[1, 2, 3, 4]

This is the list of values in the default order, in ascending order. These are very sim-
ple examples so let's now examine some slightly more complex situations where we are
sorting our dict object.

Custom sorting algorithms with Python dictionaries

If we simply give the sorted method the dictionary's keys/values as an argument it
will perform a simple sort, but by utilizing its other arguments (i.e. key and reverse) we can
get it to perform more complex sorts.

The key argument (not to be confused with the dictionary's keys) for sorted allows us
to define specific functions to use when sorting the items, as an iterator (in our dict object).
In both examples above the keys and values were both the items to sort and the items used
for comparison, but if we want to sort our dict keys using our dict values, then we would
tell sorted to do that via its key argument. Such as follows:

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

35 Prepared By: Prof. Hardik Chavda

Use the __getitem__ method as the key function
>>> sorted(numbers, key=numbers.__getitem__)
In order of sorted values: [1, 2, 3, 4]
['first', 'second', 'third', 'Fourth']

With this statement we told sorted to sort the numbers dict (its keys), and to sort
them by using numbers' class method for retrieving values — essentially we told it "for
every key in numbers, use the corresponding value in numbers for comparison to sort it.".

We can also sort the values in numbers by its keys, but using the key argument
would be more complicated (there is no dictionary method to return a key by using a certain
value, as with the list.index method). Instead we can use a list comprehension to keep it
simple:

Uses the first element of each tuple to compare
>>> [value for (key, value) in sorted(numbers.items())]
[4, 1, 2, 3]

In order of sorted keys: ['Fourth', 'first', 'second', 'third']

Now the other argument to consider is the reverse argument. If this is True, the or-

der will be reversed (descending), otherwise if it's False it will be in the default (ascending)
order, it's as simple as that. For example, as with the two previous sorts:

>>> sorted(numbers, key=numbers.__getitem__, reverse=True)
['Fourth', 'third', 'second', 'first']
>>> [value for (key, value) in sorted(numbers.items(), reverse=True)]
[3, 2, 1, 4]

These sorts are still fairly simple, but let's look at some special algorithms we might
use with strings or numbers to sort our dictionary.

Copying Collections

In Python, we use = operator to create a copy of an object. You may think that this
creates a new object; it doesn't. It only creates a new variable that shares the reference of
the original object. Let's take an example where we create a list named old_list and pass an
object reference to new_list using = operator.

Example : Copy using = operator

old_list = [[1, 2, 3], [4, 5, 6], [7, 8, 'a']]

new_list = old_list

new_list[2][2] = 9

print('Old List:', old_list)

print('ID of Old List:', id(old_list))

print('New List:', new_list)

print('ID of New List:', id(new_list))

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

36 Prepared By: Prof. Hardik Chavda

When we run above program, the output will be:

Old List: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
ID of Old List: 140673303268168
New List: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
ID of New List: 140673303268168

As you can see from the output both variables old_list and new_list shares the same
id i.e 140673303268168.

So, if you want to modify any values in new_list or old_list, the change is visible in both.
Essentially, sometimes you may want to have the original values unchanged and only modify
the new values or vice versa. In Python, there are two ways to create copies:

1. Shallow Copy
2. Deep Copy

Shallow Copy
A shallow copy creates a new object which stores the reference of the original ele-

ments. So, a shallow copy doesn't create a copy of nested objects, instead it just copies the
reference of nested objects. This means, a copy process does not recurse or create copies of
nested objects itself.

Example : Create a copy using shallow copy

import copy
old_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
new_list = copy.copy(old_list)
print("Old list:", old_list)
print("New list:", new_list)

When we run the program , the output will be:

Old list: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
New list: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

In above program, we created a nested list and then shallow copy it us-

ing copy() method. This means it will create new and independent object with same con-
tent. To verify this, we print the both old_list and new_list.

To confirm that new_list is different from old_list, we try to add new nested ob-
ject to original and check it.
Example : Adding [4, 4, 4] to old_list, using shallow copy

import copy
old_list = [[1, 1, 1], [2, 2, 2], [3, 3, 3]]
new_list = copy.copy(old_list)
old_list.append([4, 4, 4])
print("Old list:", old_list)
print("New list:", new_list)

When we run the program, it will output:

Old list: [[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]]
New list: [[1, 1, 1], [2, 2, 2], [3, 3, 3]]

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

37 Prepared By: Prof. Hardik Chavda

In the above program, we created a shallow copy of old_list. The new_list contains
references to original nested objects stored in old_list. Then we add the new list i.e [4, 4,
4] into old_list. This new sublist was not copied in new_list.

Deep Copy

A deep copy creates a new object and recursively adds the copies of nested objects
present in the original elements. However, we are going to create deep copy us-
ing deepcopy() function present in copy module. The deep copy creates independent copy
of original object and all its nested objects.

Example 5: Copying a list using deepcopy()

import copy
old_list = [[1, 1, 1], [2, 2, 2], [3, 3, 3]]
new_list = copy.deepcopy(old_list)
print("Old list:", old_list)
print("New list:", new_list)

When we run the program, it will output:

Old list: [[1, 1, 1], [2, 2, 2], [3, 3, 3]]
New list: [[1, 1, 1], [2, 2, 2], [3, 3, 3]]

In the above program, we use deepcopy() function to create copy which looks simi-

lar. However, if you make changes to any nested objects in original object old_list, you’ll see
no changes to the copy new_list.

Example 6: Adding a new nested object in the list using Deep copy

import copy
old_list = [[1, 1, 1], [2, 2, 2], [3, 3, 3]]
new_list = copy.deepcopy(old_list)
old_list[1][0] = 'BB'
print("Old list:", old_list)
print("New list:", new_list)

When we run the program, it will output:

Old list: [[1, 1, 1], ['BB', 2, 2], [3, 3, 3]]
New list: [[1, 1, 1], [2, 2, 2], [3, 3, 3]]

In the above program, when we assign a new value to old_list, we can see only

the old_list is modified. This means, both the old_list and the new_list are independent. This
is because the old_list was recursively copied, which is true for all its nested objects.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

38 Prepared By: Prof. Hardik Chavda

Defining Your Own Functions

A function is a block of organized, reusable code that is used to perform a single, re-
lated action. Functions provide better modularity for your application and a high degree of
code reusing.

As you already know, Python gives you many built-in functions like print(), etc. but
you can also create your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to
define a function in Python.

 Function blocks begin with the keyword def followed by the function name and pa-
rentheses (()).

 Any input parameters or arguments should be placed within these parentheses. You
can also define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation
string of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.
 The statement return [expression] exits a function, optionally passing back an ex-

pression to the caller. A return statement with no arguments is the same as return
None.

Parameters
By default, parameters have a positional behavior and you need to inform them in

the same order that they were defined.

Example:

The following function takes a string as input parameter and prints it on standard screen.

def printme(str):
 "This prints a passed string into this function"
 print str
 return

Calling a Function
Defining a function only gives it a name, specifies the parameters that are to be in-

cluded in the function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it
from another function or directly from the Python prompt. Following is the example to call
printme() function −

Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

39 Prepared By: Prof. Hardik Chavda

 return
Now you can call printme function
printme("I'm first call to user defined function!")
printme("Again second call to the same function")

When the above code is executed, it produces the following result –

I'm first call to user defined function!
Again second call to the same function

Function Documentation
Function doc can be described as soon as describing function. It can be inserted be-

tween triple inverted commas.

Function definition is here
def printme(str):
 ‘’’This Function is used to pass the string inside the function.’’’
 "This prints a passed string into this function"
 print str
 return

Above function is documented into python’s help.

Keyword and Optional Parameters

Keyword Arguments

While making a function call, you can mention the parameter name and assign a val-
ue to it, with param_name=value syntax, to explicitly instruct the function about the varia-
ble assignments. In this case, the arguments can be passed in any order.

>>> def myFunction(a, b, c):
... print "Value of 'a' = " + str(a)
... print "Value of 'b' = " + str(b)
... print "Value of 'c' = " + str(c)
...

>>> myFunction(b=20, c=50, a=10)
Value of 'a' = 10
Value of 'b' = 20
Value of 'c' = 50

>>> myFunction(c=20, a=50, b=10)
Value of 'a' = 50
Value of 'b' = 10
Value of 'c' = 20

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

40 Prepared By: Prof. Hardik Chavda

In above examples, we have assigned values to the function parameters in the func-
tion call itself. What would have happened, had we passed only two arguments, instead of
three?

>>> myFunction(b=20, c=50)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: myFunction() takes exactly 3 arguments (2 given)

It throws in exception, saying that 'you have provided only 2 arguments when I ex-

pect 3 from you'. But what if we want to provide only two arguments or even one, expecting
that the function should display None if a value is absent? This leads us to discuss
on Defaults or Optional arguments.

Optional Arguments

With defaults, we can assign a default value to a function parameter. While making a
function call, if the argument is not provided, the parameter takes the default value as-
signed to it. This not only avoids an exception, but makes the argument optional. When the
values are specified, default values will be overwritten and parameters will be assigned with
the values provided in the argument.

Function with two optional arguments

>>> def welcome(name='User', country='India'):
... print 'Hello ' + name + '! Welcome to ' + country + '.'
...

We specify no argument, default arguments will be taken

>>> welcome()
Hello User! Welcome to India.

We do not mention 'country' here, default value will be taken

>>> welcome(name='Mandar')
Hello Mandar! Welcome to India.

We overwrite both the default values, using keyword arguments

>>> welcome(name='Mandar', country='America')
Hello Mandar! Welcome to America.

With non-keyword arguments - order is crucial

>>> welcome('Mandar', 'Russia')
Hello Mandar! Welcome to Russia.

We specify the name in a variable

>>> name = 'Mandar'
>>> welcome(name, 'Australia')
Hello Mandar! Welcome to Australia.

UNIT- 1 Introduction to Python Syntax/ Components/ Collections &Functions

41 Prepared By: Prof. Hardik Chavda

In above example, we created a function welcome() that takes two argu-
ments name and country. We assign both these variables with default val-
ues 'User' and 'India' respectively, making both of these arguments optional. If we do not
specify any of the argument, it's default value will be printed. If we specify it, the default
values are overwritten with the values specified. Please observe the default val-
ue 'User' getting overwritten with the value 'Mandar' and the value 'India' with 'America'.

Passing Collections to a Function.

Passing collection to function is similar or like passing an parameter.

Example:

>>> listData = ['Hello','I am']

>>> listData

['Hello', 'I am']

>>> def abc(listData):

... print(listData)

...

>>>abc(listData)

['Hello', 'I am']

UNIT- 2 Introduction to Web framework and DJango DJango Template System

42 Prepared By: Prof. Hardik Chavda

HTTP Client-Server Request – Response

 The client-server architecture includes two major components request and response.

The Django framework uses client-server architecture to implement web applications. When

a client requests for a resource, a HttpRequest object is created and correspond view func-

tion is called that returns HttpResponse object. To handle request and response, Django

provides HttpRequest and HttpResponse classes. Each class has it?s own attributes and me-

thods. Let's have a look at the HttpRequest class.

Django HttpRequest
This class is defined in the django.http module and used to handle the client request.

Following are the attributes of this class.

Django HttpRequest Attributes

Attribute Description

HttpRequest.scheme A string representing the scheme of the request (HTTP or HTTPs
usually).

HttpRequest.body It returns the raw HTTP request body as a byte string.

HttpRequest.path It returns the full path to the requested page does not include the
scheme or domain.

HttpRequest.path_info It shows path info portion of the path.

HttpRequest.method It shows the HTTP method used in the request.

HttpRequest.encoding It shows the current encoding used to decode form submission
data.

HttpRequest.content_type It shows the MIME type of the request, parsed from the CON-
TENT_TYPE header.

HttpRequest.content_params It returns a dictionary of key/value parameters included in the
CONTENT_TYPE header.

HttpRequest.GET It returns a dictionary-like object containing all given HTTP GET
parameters.

HttpRequest.POST It is a dictionary-like object containing all given HTTP POST para-
meters.

HttpRequest.COOKIES It returns all cookies available.

HttpRequest.FILES It contains all uploaded files.

HttpRequest.META It shows all available Http headers.

HttpRequest.resolver_match It contains an instance of ResolverMatch representing the re-
solved URL.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

43 Prepared By: Prof. Hardik Chavda

Django HttpRequest Methods

Attribute Description

HttpRequest.get_host() It returns the original host of the request.

HttpRequest.get_port() It returns the originating port of the request.

HttpRequest.get_full_path() It returns the path, plus an appended query string, if
applicable.

HttpRequest.build_absolute_uri (location) It returns the absolute URI form of location.

HttpRequest.get_signed_cookie (key, de-
fault=RAISE_ERROR, salt='',
max_age=None)

It returns a cookie value for a signed cookie, or raises
a django.core.signing.BadSignature exception if the
signature is no longer valid.

HttpRequest.is_secure() It returns True if the request is secure; that is, if it
was made with HTTPS.

HttpRequest.is_ajax() It returns True if the request was made via an
XMLHttpRequest.

Django HttpRequest Example

// views.py

def methodinfo(request):
 return HttpResponse("Http request is: "+request.method)

// urls.py

path('info',views.methodinfo)

Start the server and get access to the browser. It shows the request method name at the
browser.

Output:

UNIT- 2 Introduction to Web framework and DJango DJango Template System

44 Prepared By: Prof. Hardik Chavda

Django HttpResponse

This class is a part of django.http module. It is responsible for generating response
corresponds to the request and back to the client.

Django HttpResponse Attributes

Attribute Description

HttpResponse.content A bytestring representing the content, encoded from a string if
necessary.

HttpResponse.charset It is a string denoting the charset in which the response will be
encoded.

HttpResponse.status_code It is an HTTP status code for the response.

HttpResponse.reason_phrase The HTTP reason phrase for the response.

HttpResponse.streaming It is false by default.

HttpResponse.closed It is True if the response has been closed.

Django HttpResponse Methods

Method Description

HttpResponse.__init__(content='',
content_type=None, status=200,
reason=None, charset=None)

It is used to instantiate an HttpResponse object with the
given page content and content type.

HttpResponse.__setitem__(header,
value)

It is used to set the given header name to the given value.

HttpResponse.__delitem__(header) It deletes the header with the given name.

HttpResponse.__getitem__(header) It returns the value for the given header name.

HttpResponse.has_header(header) It returns either True or False based on a case-insensitive
check for a header with the provided name.

HttpResponse.setdefault(header,
value)

It is used to set default header.

HttpResponse.write(content) It is used to create response object of file-like object.

HttpResponse.flush() It is used to flush the response object.

HttpResponse.tell() This method makes an HttpResponse instance a file-like
object.

HttpResponse.getvalue() It is used to get the value of HttpResponse.content.

HttpResponse.readable() This method is used to create stream-like object of
HttpResponse class.

HttpResponse.seekable() It is used to make response object seekable.

We can use these methods and attributes to handle the response in the Django application.

Concept of Web Framework and Web Application
 A web framework (WF) or web application framework (WAF) is a software frame-

work that is designed to support the development of web applications including web servic-

es, web resources, and web APIs. Web frameworks, provide a standard way to build and

deploy web applications.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

45 Prepared By: Prof. Hardik Chavda

Web frameworks aim to automate the overhead associated with common activities

performed in web development. For example, many web frameworks

pro libraries for database access, templating frameworks,and session management, and

they often promote code reuse. Although they often target development of dynamic web

sites, they are also applicable to static websites.

Types of framework architectures
Most web frameworks are based on the model–view–controller (MVC) pattern.

Model–view–controller (MVC)

Many frameworks follow the MVC architectural pattern to separate the data mod-
el with business rules from the user interface. This is generally considered a good practice as
it modularizes code, promotes code reuse, and allows multiple interfaces to be applied. In
web applications, this permits different views to be presented, such as web pages for hu-
mans, and web service interfaces for remote applications.

Push-based vs. pull-based

Most MVC frameworks follow a push-based architecture also called "action-based".
These frameworks use actions that do the required processing, and then "push" the data to
the view layer to render the results. Django, Ruby on Rails, Symfony, Spring
MVC, Stripes, CodeIgniter are good examples of this architecture.

Three-tier organization
In three-tier organization, applications are structured around three physical tiers:

client, application, and database.The database is normally an RDBMS. The application con-
tains the business logic, running on a server and communicates with the client using
HTTP. The client on web applications is a web browser that runs HTML generated by the ap-
plication layer.

Framework applications :

Frameworks are built to support the construction of internet applications based on a
single programming language, ranging in focus from general purpose tools such as Zend
Framework and Ruby on Rails, which augment the capabilities of a specific language, to na-
tive-language programmable packages built around a specific user application, such as Con-
tent Management systems, some mobile development tools and some portal tools.

General-purpose website frameworks:

Web frameworks must function according to the architectural rules of browsers and
web protocols such as HTTP, which is stateless. Webpages are served up by a server and can
then be modified by the browser using JavaScript. Either approach has its advantages and
disadvantages.

Server-side page changes typically require that the page be refreshed, but allow any
language to be used and more computing power to be utilized. Client-side changes allow the
page to be updated in small chunks which feels like a desktop application, but are limited to
JavaScript and run in the user's browser, which may have limited computing power. Some
mix of the two is typically used

UNIT- 2 Introduction to Web framework and DJango DJango Template System

46 Prepared By: Prof. Hardik Chavda

Introduction to Django

Django is a web application framework written in Python programming language. It
is based on MVT (Model View Template) design pattern. The Django is very demanding due
to its rapid development feature. It takes less time to build application after collecting client
requirement.

This framework uses a famous tag line:The web framework for perfectionists with

deadlines. By using Django, we can build web applications in very less time. Django is de-
signed in such a manner that it handles much of configure things automatically, so we can
focus on application development only.

Django was design and developed by Lawrence journal world in 2003 and publicly re-

leased under BSD license in July 2005. Currently, DSF (Django Software Foundation) main-
tains its development and release cycle.

Django was released on 21, July 2005. Its current stable version is 2.0.3 which was

released on 6 March, 2018.

Features of Django:

Rapid Development

Django was designed with the intention to make a framework which takes less time
to build web application. The project implementation phase is a very time taken but Django
creates it rapidly.

Secure

Django takes security seriously and helps developers to avoid many common securi-
ty mistakes, such as SQL injection, cross-site scripting, cross-site request forgery etc. Its user
authentication system provides a secure way to manage user accounts and passwords.

Scalable

Django is scalable in nature and has ability to quickly and flexibly switch from small
to large scale application project.

Fully loaded

Django includes various helping task modules and libraries which can be used to
handle common Web development tasks. Django takes care of user authentication, content
administration, site maps, RSS feeds etc.

Versatile

Django is versatile in nature which allows it to build applications for different-
different domains. Now days, Companies are using Django to build various types of applica-
tions like: content management systems, social networks sites or scientific computing plat-
forms etc.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

47 Prepared By: Prof. Hardik Chavda

Open Source
Django is an open source web application framework. It is publicly available without

cost. It can be downloaded with source code from the public repository. Open source re-
duces the total cost of the application development.

Vast and Supported Community

Django is an one of the most popular web framework. It has widely supportive com-
munity and channels to share and connect.

Django is widely accepted and used by various well-known sites such as:

 Instagram
 Mozilla
 Disqus
 Pinterest
 Bitbucket
 The Washington Times
 Nasa
 Disqus
 Knight Foundation
 MacArthur Foundation
 National Geographic
 Open Knowledge Foundation
 Open Stack

UNIT- 2 Introduction to Web framework and DJango DJango Template System

48 Prepared By: Prof. Hardik Chavda

MVC Design Pattern

 The MVC pattern was created to separate business logic from representation. MVC is
the most popular architecture in use today. Many popular frameworks like Ruby on Rails,
Laravel, CodeIgniter and even Django uses it. The MVC architecture divides an application
into the following three layers:

Model View Controller

Here is a rundown of steps involved in an MVC blog application.

1. Web browser or client sends the request to the web server, asking the server to dis-
play a blog post.

2. The request received by the server is passed to the controller of the application.
3. The controller asks the model to fetch the blog post.
4. The model sends the blog post to the controller.
5. The controller then passes the blog post data to the view.
6. The view uses blog post data to create an HTML page.
7. At last, the controller returns the HTML content to the client.

Django MVT

The MVT (Model View Template) is a software design pattern. It is a collection of
three important components Model View and Template. The Model helps to handle data-
base. It is a data access layer which handles the data.

The Template is a presentation layer which
handles User Interface part completely. The View
is used to execute the business logic and interact
with a model to carry data and renders a tem-
plate.

Although Django follows MVC pattern but
maintains its own conventions. So, control is han-
dled by the framework itself.

There is no separate controller and complete application is based on Model View
and Template. That?s why it is called MVT application.

Here, a user requests for a resource to the Django, Django works as a controller and
check to the available resource in URL.

If URL maps, a view is called that interact with model and template, it renders a
template. Django responds back to the user and sends a template as a response.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

49 Prepared By: Prof. Hardik Chavda

Django installation
Install Python

Django is a Python web framework, thus requiring Python to be installed on your
machine. At the time of writing, Python 3.5 is the latest version.

To install Python on your machine go to https://python.org/downloads/. The web-

site should offer you a download button for the latest Python version. Download the ex-
ecutable installer and run it. Check the box next to Add Python 3.5 to PATH and then
click Install Now.

After installation, open the command prompt and check that the Python version

matches the version you installed by executing:

python --version

About pip
pip is a package manage for Python. It makes installing and uninstalling Python pack-

ages (such as Django!) very easy. For the rest of the installation, we’ll use pip to install Py-
thon packages from the command line.

To install pip on your machine, go to https://pip.pypa.io/en/latest/installing/, and

follow the Installing with get-pip.py instructions.

Install virtualenv and virtualenvwrapper

virtualenv and virtualenvwrapper provide a dedicated environment for each Django
project you create. While not mandatory, this is considered a best practice and will save you
time in the future when you’re ready to deploy your project. Simply type:

pip install virtualenvwrapper-win

Then create a virtual environment for your project:

mkvirtualenv myproject

The virtual environment will be activated automatically and you’ll see “(myproject)”

next to the command prompt to designate that. If you start a new command prompt, you’ll
need to activate the environment again using:

workon myproject

Install Django

Django can be installed easily using pip within your virtual environment.In the com-
mand prompt, ensure your virtual environment is active, and execute the following com-
mand:

pip install django

This will download and install the latest Django release.
After the installation has completed, you can verify your Django installation by ex-

ecuting django-admin --version in the command prompt.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

50 Prepared By: Prof. Hardik Chavda

Setting up Database
If you plan to use Django’s database API functionality, you’ll need to make sure a da-

tabase server is running. Django supports many different database servers and is officially
supported with PostgreSQL, MySQL, Oracle and SQLite.

If you are developing a simple project or something you don’t plan to deploy in a
production environment, SQLite is generally the simplest option as it doesn’t require run-
ning a separate server. However, SQLite has many differences from other databases, so if
you are working on something substantial, it’s recommended to develop with the same da-
tabase as you plan on using in production
In addition to a database backend, you’ll need to make sure your Python database bindings
are installed.

 If you’re using PostgreSQL, you’ll need the psycopg2 package.
 If you’re using MySQL, you’ll need a DB API driver like mysqlclient.
 If you’re using SQLite you might want to read the SQLite backend notes.
 If you’re using Oracle, you’ll need a copy of cx_Oracle

If you plan to use Django’s manage.py migrate command to automatically create da-

tabase tables for your models (after first installing Django and creating a project), you’ll
need to ensure that Django has permission to create and alter tables in the database you’re
using; if you plan to manually create the tables, you can simply grant Djan-
go SELECT, INSERT, UPDATE and DELETE permissions. After creating a database user with
these permissions, you’ll specify the details in your project’s settings file, see DATABASES for
details.

Python packages for different databases

Database Python package pip installation syntax

PostgreSQL psycopg2 pip install psycopg2

MySQL mysql-python pip install PyMySQL/
pip install mysqlclient

Oracle cx_Oracle pip install cx_Oracle

SQLite Included with the Python distribution N/A

We need to provide all connection details in the settings file. The settings.py file of our

project contains the following code for the database.

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'mydatabase',
 }
}

After providing details, check the connection using the migrate command.

python manage.py makemigrations
python manage.py migrate

UNIT- 2 Introduction to Web framework and DJango DJango Template System

51 Prepared By: Prof. Hardik Chavda

Starting Project
If this is your first time using Django, you’ll have to take care of some initial setup.

Namely, you’ll need to auto-generate some code that establishes a Django project – a col-
lection of settings for an instance of Django, including database configuration, Django-
specific options and application-specific settings.

From the command line, cd into a directory where you’d like to store your code,

then run the following command:

django-admin startproject mysite

This will create a mysite directory in your current directory.

Let’s look at what startproject created:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

The development server

Let’s verify your Django project works. Change into the outer mysite directory, if you
haven’t already, and run the following commands:

python manage.py runserver

You’ll see the following output on the command line:

Performing system checks...
System check identified no issues (0 silenced).
You have unapplied migrations; your app may not work properly until they are applied.
Run 'python manage.py migrate' to apply them.
August 28, 2019 - 15:50:53
Django version 1.10, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Django Project Architecture

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

UNIT- 2 Introduction to Web framework and DJango DJango Template System

52 Prepared By: Prof. Hardik Chavda

These files are:
 The outer mysite/ root directory is just a container for your project. Its name doesn’t

matter to Django; you can rename it to anything you like.
 manage.py: A command-line utility that lets you interact with this Django project in

various ways.
 The inner mysite/ directory is the actual Python package for your project. Its name is

the Python package name you’ll need to use to import anything inside it
(e.g. mysite.urls).

 mysite/__init__.py: An empty file that tells Python that this directory should be con-
sidered a Python package.

 mysite/settings.py: Settings/configuration for this Django project. Django set-
tings will tell you all about how settings work.

 mysite/urls.py: The URL declarations for this Django project; a “table of contents” of
your Django-powered site.

 mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your
project.

Understanding manage.py,
In addition, manage.py is automatically created in each Django project. manage.py

does the same thing as django-admin but takes care of a few things for you:
 It puts your project’s package on sys.path.
 It sets the DJANGO_SETTINGS_MODULE environment variable so that it points to

your project’s settings.py file.

Understanding settings.py,
A Django settings file contains all the configuration of your Django installation. A set-

tings file is just a Python module with module-level variables.

Here are a couple of example settings:

ALLOWED_HOSTS = ['www.example.com']

DEBUG = False

DEFAULT_FROM_EMAIL = 'webmaster@example.com'

We can manage many other setting of application and it’s behavior through settings.py.

Core Settings : ADMINS, ALLOWED_HOSTS, CACHES, DATABASES, DATE_FORMAT, DEBUG,

CHARSET, FILE_UPLOAD, FILE_STORAGE, EMAIL_HOST, FORMAT_MODULE_PATH, IN-
STALLED_APPS, LANGUAGES, LOCALE_PATHS, MIDDLEWARE, TEMPLATES, TIME_ZONE, etc.

Auth: AUTHENTICATION_BACKENDS, AUTH_USER_MODEL, LOGIN_REDIRECT_URL, LO-
GIN_URL, LOGOUT_REDIRECT_URL, PASSWORD_HASHERS, AUTH_PASSWORD_VALIDATORS

Messages: MESSAGE_LEVEL, MESSAGE_STORAGE, MESSAGE_TAGS
Sessions: SESSION_CACHE_ALIAS, SESSION_COOKIE_AGE, SESSION_COOKIE_DOMAIN, SES-
SION_COOKIE_HTTPONLY, SESSION_COOKIE_NAME, SESSION_COOKIE_PATH, SES-
SION_COOKIE_SECURE, SESSION_ENGINE, SESSION_SERIALIZER.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

53 Prepared By: Prof. Hardik Chavda

Sites: SITE_ID

Static Files: STATIC_ROOT, STATIC_URL, STATICFILES_DIRS, STATICFILES_STORAGE, STATIC-
FILES_FINDERS

Understanding __init__.py
The __init__.py files are required to make Python treat directories containing the file

as packages. This prevents directories with a common name, such as string, unintentionally
hiding valid modules that occur later on the module search path. In the simplest
case, __init__.py can just be an empty file, but it can also execute initialization code for the
package or set the __all__ variable, described later.

Understanding wsgi.py
WSGI is the Web Server Gateway Interface. It is a specification that describes how a

web server communicates with web applications, and how web applications can be chained
together to process one request.

Django’s primary deployment platform is WSGI, the Python standard for web servers

and applications. Django’s startproject management command sets up a simple default
WSGI configuration for you, which you can tweak as needed for your project, and direct any
WSGI-compliant application server to use.

Understanding urls.py and Python regular expression

A clean, elegant URL scheme is an important detail in a high-quality Web application.
Django lets you design URLs however you want, with no framework limitations

To design URLs for an app, you create a Python module informally called
a URLconf (URL configuration). This module is pure Python code and is a simple mapping
between URL patterns (simple regular expressions) to Python functions (your views).

This mapping can be as short or as long as needed. It can reference other mappings.
And, because it’s pure Python code, it can be constructed dynamically.

Here’s a sample URLconf:

from django.conf.urls import url
from . import views
urlpatterns = [
 url(r'^articles/2003/$', views.special_case_2003),
 url(r'^articles/([0-9]{4})/$', views.year_archive),
 url(r'^articles/([0-9]{4})/([0-9]{2})/$', views.month_archive),
 url(r'^articles/([0-9]{4})/([0-9]{2})/([0-9]+)/$', views.article_detail),
]

Notes:

 To capture a value from the URL, just put parenthesis around it.

 There’s no need to add a leading slash, because every URL has that. For example,
it’s ^articles, not ^/articles.

 The 'r' in front of each regular expression string is optional but recommended. It tells
Python that a string is “raw” – that nothing in the string should be escaped.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

54 Prepared By: Prof. Hardik Chavda

Example requests:

 A request to /articles/2005/03/ would match the third entry in the list. Django would
call the function views.month_archive(request, '2005', '03').

 /articles/2005/3/ would not match any URL patterns, because the third entry in the
list requires two digits for the month.

 /articles/2003/ would match the first pattern in the list, not the second one, because
the patterns are tested in order, and the first one is the first test to pass. Feel free to
exploit the ordering to insert special cases like this. Here, Django would call the func-
tion views.special_case_2003(request)

 /articles/2003 would not match any of these patterns, because each pattern requires
that the URL end with a slash.

 /articles/2003/03/03/ would match the final pattern. Django would call the func-
tion views.article_detail(request, '2003', '03', '03').

Understanding admin.py
 admin.py consist of all major parts to maintain django-admin panel which comes
with django. django.contrib.admin is package that consists of various other functionality
that can be moulded to your application with admin.py.

Some of them are checks, exceptions, templatetags.admin_urls, utils, views, wid-

gets, etc. More importantly users can register their models into admin.py for CRUD opera-

tions of applications.

Understanding models.py
A model is the single, definitive source of information about your data. It contains

the essential fields and behaviors of the data you’re storing. Generally, each model maps to
a single database table.
The basics:

 Each model is a Python class that subclasses django.db.models.Model.
 Each attribute of the model represents a database field.
 With all of this, Django gives you an automatically-generated database-access API

Example:

This example model defines a Person, which has a first_name and last_name:
from django.db import models.

class Person(models.Model):
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class

attribute, and each attribute maps to a database column.The above Person model would

UNIT- 2 Introduction to Web framework and DJango DJango Template System

55 Prepared By: Prof. Hardik Chavda

create a database table like this:

CREATE TABLE myapp_person (
 "id" serial NOT NULL PRIMARY KEY,
 "first_name" varchar(30) NOT NULL,
 "last_name" varchar(30) NOT NULL
);

Some technical notes:
 The name of the table, myapp_person, is automatically derived from some model

metadata but can be overridden. See Table names for more details.
 An id field is added automatically, but this behavior can be overridden.

See Automatic primary key fields.
 The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s

worth noting Django uses SQL tailored to the database backend specified in
your settings file.

Understanding views.py
class django.views.generic.base.View

The master class-based base view. All other class-based views inherit from this base
class. It isn’t strictly a generic view and thus can also be imported from django.views.
Method Flowchart

 setup()

 dispatch()

 http_method_not_allowed()

 options()

Example views.py:

from django.http import HttpResponse
from django.views import View

class MyView(View):

 def get(self, request, *args, **kwargs):
 return HttpResponse('Hello, World!')

Example urls.py:

from django.urls import path

from myapp.views import MyView

urlpatterns = [
 path('mine/', MyView.as_view(), name='my-view'),
]

UNIT- 2 Introduction to Web framework and DJango DJango Template System

56 Prepared By: Prof. Hardik Chavda

Template system basics
Being a web framework, Django needs a convenient way to generate HTML dynami-

cally. The most common approach relies on templates. A template contains the static parts
of the desired HTML output as well as some special syntax describing how dynamic content
will be inserted.

A Django project can be configured with one or several template engines (or even
zero if you don’t use templates). Django ships built-in backends for its own template system,
creatively called the Django template language (DTL), and for the popular alternative Jinja2.
Backends for other template languages may be available from third-parties.
Django defines a standard API for loading and rendering templates regardless of the back-
end. Loading consists of finding the template for a given identifier and preprocessing it,
usually compiling it to an in-memory representation. Rendering means interpolating the
template with context data and returning the resulting string.

The Django template language is Django’s own template system. Until Django 1.8 it
was the only built-in option available. It’s a good template library even though it’s fairly opi-
nionated and sports a few idiosyncrasies. If you don’t have a pressing reason to choose
another backend, you should use the DTL, especially if you’re writing a pluggable application
and you intend to distribute templates. Django’s contrib apps that include templates,
like django.contrib.admin, use the DTL.

For historical reasons, both the generic support for template engines and the imple-
mentation of the Django template language live in the django.template namespace.

Using template system
A Django template is simply a text document or a Python string marked-up using the

Django template language. Some constructs are recognized and interpreted by the template
engine. The main ones are variables and tags.

A template is rendered with a context. Rendering replaces variables with their val-
ues, which are looked up in the context, and executes tags. Everything else is output as is.
The syntax of the Django template language involves four constructs.

1. Variables :
A variable outputs a value from the context, which is a dict-like object mapping keys to

values.Variables are surrounded by {{ and }} like this:

2. Tags :
Tags provide arbitrary logic in the rendering process. This definition is deliberately va-

gue. For example, a tag can output content, serve as a control structure e.g. an “if” state-
ment or a “for” loop, grab content from a database, or even enable access to other tem-
plate tags.Tags are surrounded by {% and %}

3. Filters :
Filters transform the values of variables and tag arguments.
{{ django|title }}

4. Comments :
{# this won't be rendered #}, A {% comment %} tag provides multi-line comments.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

57 Prepared By: Prof. Hardik Chavda

Basic Template Tags and Filters
autoescape

Controls the current auto-escaping behavior. This tag takes either on or off as an ar-
gument and that determines whether auto-escaping is in effect inside the block. The block is
closed with an endautoescape ending tag.

When auto-escaping is in effect, all variable content has HTML escaping applied to it
before placing the result into the output (but after any filters have been applied). This is
equivalent to manually applying the escape filter to each variable.

{% autoescape on %}
 {{ body }}
{% endautoescape %}

block
Defines a block that can be overridden by child templates.

comment

Ignores everything between {% comment %} and {% endcomment %}. An optional
note may be inserted in the first tag. For example, this is useful when commenting out code
for documenting why the code was disabled. Comment tags cannot be nested.

csrf_token

This tag is used for CSRF protection. For more information on Cross Site Request For-
geries (CSRF).

cycle

Produces one of its arguments each time this tag is encountered. The first argument
is produced on the first encounter, the second argument on the second encounter, and so
forth. Once all arguments are exhausted, the tag cycles to the first argument and produces
it again. This tag is particularly useful in a loop:

{% for o in some_list %}
 <tr class="{% cycle 'row1' 'row2' %}">
 ...
 </tr>
{% endfor %}

The first iteration produces HTML that refers to class row1, the second to row2, the
third to row1 again, and so on for each iteration of the loop. You can use variables, too. For
example, if you have two template variables, rowvalue1 and rowvalue2, you can alternate
between their values like this:

{% for o in some_list %}
 <tr class="{% cycle rowvalue1 rowvalue2 %}">
 ...
 </tr>
{% endfor %}

You can use any number of values in a cycle tag, separated by spaces. Values en-

closed in single quotes (') or double quotes (") are treated as string literals, while values
without quotes are treated as template variables.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

58 Prepared By: Prof. Hardik Chavda

debug

Outputs a whole load of debugging information, including the current context and
imported modules.

extends

Signals that this template extends a parent template. This tag can be used in two ways:
1. {% extends "base.html" %} (with quotes) uses the literal value "base.html" as the

name of the parent template to extend.
2. {% extends variable %} uses the value of variable. If the variable evaluates to a string,

Django will use that string as the name of the parent template. If the variable eva-
luates to a Template object, Django will use that object as the parent template.

filter
Filters the contents of the block through one or more filters.

firstof
Outputs the first argument variable that is not False. Outputs nothing if all the

passed variables are False.
Sample usage:

{% firstof var1 var2 var3 %}
This is equivalent to:
{% if var1 %}
 {{ var1 }}
{% elif var2 %}
 {{ var2 }}
{% elif var3 %}
 {{ var3 }}
{% endif %}

for

Loops over each item in an array, making the item available in a context variable. For
example, to display a list of athletes provided in athlete_list:

{% for athlete in athlete_list %}
 {{ athlete.name }}
{% endfor %}

You can loop over a list in reverse by using {% for obj in list reversed %}. If you need
to loop over a list of lists, you can unpack the values in each sub list into individual variables.
This can also be useful if you need to access the items in a dictionary. For example, if your
context contained a dictionary data, the following would display the keys and values of the
dictionary:

{% for key, value in data.items %}
 {{ key }}: {{ value }}
{% endfor %}

UNIT- 2 Introduction to Web framework and DJango DJango Template System

59 Prepared By: Prof. Hardik Chavda

for … empty
The for tag can take an optional {% empty %} clause whose text is displayed if the

given array is empty or could not be found:

{% for athlete in athlete_list %}
 {{ athlete.name }}
{% empty %}
 Sorry, no athletes in this list.
{% endfor %}

if
The {% if %} tag evaluates a variable, and if that variable is true (i.e. exists, is not

empty, and is not a false boolean value) the contents of the block are output:

{% if athlete_list %}
 Number of athletes: {{ athlete_list|length }}
{% elif athlete_in_locker_room_list %}
 Athletes should be out of the locker room soon!
{% else %}
 No athletes.
{% endif %}

In the above, if athlete_list is not empty, the number of athletes will be displayed by
the {{ athlete_list|length }} variable. As you can see, the if tag may take one or several {%
elif %} clauses, as well as an {% else %} clause that will be displayed if all previous conditions
fail. These clauses are optional.

Boolean operators
if tags may use and, or or not to test a number of variables or to negate a given variable:

{% if athlete_list and coach_list %}
 Both athletes and coaches are available.
{% endif %}

{% if not athlete_list %}
 There are no athletes.
{% endif %}

{% if athlete_list or coach_list %}
 There are some athletes or some coaches.
{% endif %}

Use of both and and or clauses within the same tag is allowed, with and having higher pre-
cedence than or e.g.:

{% if athlete_list and coach_list or cheerleader_list %}
will be interpreted like:

if (athlete_list and coach_list) or cheerleader_list

Use of actual parentheses in the if tag is invalid syntax. If you need them to indicate
precedence, you should use nested if tags.
if tags may also use the operators ==, !=, <, >, <=, >= and in which work as listed in Table E-1.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

60 Prepared By: Prof. Hardik Chavda

Complex expressions
All of the above can be combined to form complex expressions. For such expres-

sions, it can be important to know how the operators are grouped when the expression is
evaluated – that is, the precedence rules. The precedence of the operators, from lowest to
highest, is as follows:

 or
 and
 not
 in
 ==, !=, <, >, <=, >=

This order of precedence follows Python exactly.

Filters

You can also use filters in the if expression. For example:

{% if messages|length >= 100 %}
You have lots of messages today!
{% endif %}

ifchanged

Check if a value has changed from the last iteration of a loop. The {% ifchanged
%} block tag is used within a loop. It has two possible uses.

1. Checks its own rendered contents against its previous state and only displays the
content if it has changed.

2. If given one or more variables, check whether any variable has changed.

ifequal

Output the contents of the block if the two arguments equal each other. Example:

{% ifequal user.pk comment.user_id %}
 ...
{% endifequal %}

An alternative to the ifequal tag is to use the if tag and the == operator.

ifnotequal

Just like ifequal, except it tests that the two arguments are not equal. An alternative
to the ifnotequal tag is to use the if tag and the != operator.

include

Loads a template and renders it with the current context. This is a way of including
other templates within a template. The template name can either be a variable:

{% include template_name %}
or a hard-coded (quoted) string:
{% include "foo/bar.html" %}

load
Loads a custom template tag set. For example, the following template would load all

the tags and filters registered in somelibrary and otherlibrary located in package package:

{% load somelibrary package.otherlibrary %}

UNIT- 2 Introduction to Web framework and DJango DJango Template System

61 Prepared By: Prof. Hardik Chavda

 You can also selectively load individual filters or tags from a library, using
the from argument.
 In this example, the template tags/filters named foo and bar will be loaded
from somelibrary:

{% load foo bar from somelibrary %}

lorem

Displays random lorem ipsum Latin text. This is useful for providing sample data in
templates. Usage:

{% lorem [count] [method] [random] %}

The {% lorem %} tag can be used with zero, one, two or three arguments. The arguments
are:

1. Count. A number (or variable) containing the number of paragraphs or words to
generate (default is 1).

2. Method. Either w for words, p for HTML paragraphs or b for plain-text paragraph
blocks (default is b).

3. Random. The word random, which if given, does not use the common paragraph (Lo-
rem ipsum dolor sit amet…) when generating text.

For example, {% lorem 2 w random %} will output two random Latin words.

now
Displays the current date and/or time, using a format according to the given string.

Such string can contain format specifiers characters as described in the date filter section.
Example:

It is {% now "jS F Y H:i" %}

The format passed can also be one of the predefined
ones DATE_FORMAT, DATETIME_FORMAT, SHORT_DATE_FORMAT or SHORT_DATETIME_F
ORMAT. The predefined formats may vary depending on the current locale and if format-
localization is enabled, e.g.:

It is {% now "SHORT_DATETIME_FORMAT" %}

spaceless
Removes whitespace between HTML tags. This includes tab characters and newlines.

Example usage:

{% spaceless %}
 <p>
 Foo
 </p>
{% endspaceless %}

This example would return this HTML:

<p>Foo</p>

with
Caches a complex variable under a simpler name. This is useful when accessing an

expensive method (e.g., one that hits the database) multiple times. For example:

{% with total=business.employees.count %}
 {{ total }} employee{{ total|pluralize }}
{% endwith %}

UNIT- 2 Introduction to Web framework and DJango DJango Template System

62 Prepared By: Prof. Hardik Chavda

Built-in filters

add : Adds the argument to the value. For example:

{{ value|add:"2" }}
If value is 4, then the output will be 6.

addslashes : Adds slashes before quotes. Useful for escaping strings in CSV, for example.

{{ value|addslashes }}
If value is “I'm using Django”, the output will be “I\'m using Django”.

capfirst : Capitalizes the first character of the value. If the first character is not a letter, this
filter has no effect.

center : Centers the value in a field of a given width.

"{{ value|center:"14" }}"
If value is “Django”, the output will be “ Django ”

cut: Removes all values of arg from the given string.

date : Formats a date according to the given format. Uses a similar format as
PHP’s date() function with some differences. These format characters are not used in Django
outside of templates. They were designed to be compatible with PHP to ease transitioning
for designers.

{{ value|date:"D d M Y" }}

If value is a datetime object (e.g., the result of datetime.datetime.now()), the output
will be the string “Fri 01 Jul 2016”. The format passed can be one of the predefined
ones DATE_FORMAT, DATETIME_FORMAT, SHORT_DATE_FORMAT or SHORT_DATETIME_F
ORMAT, or a custom format that uses date format specifiers.

default: If value evaluates to False, uses the given default. Otherwise, uses the value.

{{ value|default:"nothing" }}

default_if_none : If (and only if) value is None, uses the given default. Otherwise, uses the
value.

dictsort : Takes a list of dictionaries and returns that list sorted by the key given in the ar-
gument.

{{ value|dictsort:"name" }}

divisibleby: Returns True if the value is divisible by the argument. For example:

{{ value|divisibleby:"3" }}
If value is 21, the output would be True.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

63 Prepared By: Prof. Hardik Chavda

escape : Escapes a string’s HTML. Specifically, it makes these replacements:
 < is converted to <
 > is converted to >
 ' (single quote) is converted to '
 " (double quote) is converted to "
 & is converted to &

The escaping is only applied when the string is output, so it does not matter where in
a chained sequence of filters you put escape: it will always be applied as though it were the
last filter.

escapejs: Escapes characters for use in JavaScript strings. This does not make the string safe
for use in HTML, but does protect you from syntax errors when using templates to generate
JavaScript/JSON.

filesizeformat: Formats the value like a ‘human-readable’ file size (i.e. '13 KB', '4.1 MB', '102
bytes', etc.).

{{ value|filesizeformat }}
If value is “123456789”, the output would be 117.7 MB.

first : Returns the first item in a list.

floatformat : When used without an argument, rounds a floating-point number to one de-
cimal place – but only if there’s a decimal part to be displayed. If used with a numeric integ-
er argument, floatformat rounds a number to that many decimal places.

For example, if value is 34.23234, {{ value|floatformat:3 }} will output 34.232.

get_digit: Given a whole number, returns the requested digit, where 1 is the right-most di-
git.

join: Joins a list with a string, like Python’s str.join(list).

last: Returns the last item in a list.

length: Returns the length of the value. This works for both strings and lists.

length_is: Returns True if the value’s length is the argument, or False otherwise. For exam-
ple:

{{ value|length_is:"4" }}

linebreaks: Replaces line breaks in plain text with appropriate HTML; a single newline be-
comes an HTML line break (
) and a new line followed by a blank line becomes a para-
graph break (</p>).

linebreaksbr : Converts all newlines in a piece of plain text to HTML line breaks (
).

linenumbers: Displays text with line numbers.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

64 Prepared By: Prof. Hardik Chavda

ljust: Left-aligns the value in a field of a given width. For example:

{{ value|ljust:"10" }}

If value is “Django”, the output will be “Django ”.

lower : Converts a string into all lowercase.

make_list : Returns the value turned into a list. For a string, it’s a list of characters. For an
integer, the argument is cast into an Unicode string before creating a list.

phone2numeric: Converts a phone number (possibly containing letters) to its numerical
equivalent. The input doesn’t have to be a valid phone number. This will happily convert any
string. For example:

{{ value|phone2numeric }}
If value is 800-COLLECT, the output will be 800-2655328.

pluralize: Returns a plural suffix if the value is not 1. By default, this suffix is “s”.For words
that don’t pluralize by simple suffix, you can specify both a singular and plural suffix, sepa-
rated by a comma. Example:

You have {{ num_cherries }} cherr{{ num_cherries|pluralize:”y,ies” }}.

random: Returns a random item from the given list.

rjust: Right-aligns the value in a field of a given width. For example:

{{ value|rjust:"10" }}
If value is “Django”, the output will be “ Django”.

slice: Returns a slice of the list. Uses the same syntax as Python’s list slicing.

slugify:Converts to ASCII. Converts spaces to hyphens. Removes characters that aren’t al-
phanumeric, underscores, or hyphens. Converts to lowercase. Also strips leading and trailing
whitespace.

stringformat: Formats the variable according to the argument, a string formatting specifier.
This specifier uses Python string formatting syntax, with the exception that the leading % is
dropped.

time: Formats a time according to the given format. Given format can be the predefined
one TIME_FORMAT, or a custom format, same as the date
filter.

timesince: Formats a date as the time since that date (e.g., 4 days, 6 hours). Takes an op-
tional argument that is a variable containing the date to use as the comparison point (with-
out the argument, the comparison point is now).

timeuntil: Measures the time from now until the given date or datetime.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

65 Prepared By: Prof. Hardik Chavda

title: Converts a string into title case by making words start with an uppercase character and
the remaining characters lowercase.

truncatechars: Truncates a string if it is longer than the specified number of characters.
Truncated strings will end with a translatable ellipsis sequence (…). For example:

{{ value|truncatechars:9 }}

truncatechars_html: Similar to truncatechars, except that it is aware of HTML tags.

truncatewords: Truncates a string after a certain number of words.

truncatewords_html: Similar to truncatewords, except that it is aware of HTML tags.

unordered_list: Recursively takes a self-nested list and returns an HTML unordered list –
 without opening and closing tags.

upper: Converts a string into all uppercase.

urlize:Converts URLs and email addresses in text into clickable links. This template tag works

on links prefixed with http://, https://, or www..

urlizetrunc:Converts URLs and email addresses into clickable links just like urlize, but trun-
cates URLs longer than the given character limit. For example:

{{ value|urlizetrunc:15 }}
If value is “Check out www.djangoproject.com”, the output would be “Check out www.djangopr...”. As
with urlize, this filter should only be applied to plain text.

wordcount: Returns the number of words.

wordwrap : Wraps words at specified line length.

yesno: Maps values for true, false and (optionally) None, to the strings yes, no, maybe, or a
custom mapping passed as a comma-separated list, and returns one of those strings accord-
ing to the value: For example:

{{ value|yesno:"yeah,no,maybe" }}

UNIT- 2 Introduction to Web framework and DJango DJango Template System

66 Prepared By: Prof. Hardik Chavda

Internationalization Tags and Filters

Django provides template tags and filters to control each aspect of internationaliza-

tion in templates. They allow for granular control of translations, formatting, and time zone
conversions.

i18n: This library allows specifying translatable text in templates. To enable it,
set USE_I18N to True, then load it with {% load i18n %}.

l10n: This library provides control over the localization of values in templates. You only need
to load the library using {% load l10n %}, but you’ll often set USE_L10N to True so that loca-
lization is active by default.

tz: This library provides control over time zone conversions in templates. Like l10n, you only
need to load the library using {% load tz %}, but you’ll usually also set USE_TZ to True so that
conversion to local time happens by default. See time-zones-in-templates.

Other Tags and Filters Libraries

static : To link to static files that are saved in STATIC_ROOT Django ships with
a static template tag. You can use this regardless if you’re using RequestContext or not.

{% load static %}

It is also able to consume standard context variables, e.g. assuming us-

er_stylesheet variable is passed to the template:

{% load static %}
<link rel="stylesheet" href="{% static user_stylesheet %}" type="text/css" media="screen" />

If you’d like to retrieve a static URL without displaying it, you can use a slightly dif-
ferent call.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

67 Prepared By: Prof. Hardik Chavda

Using Templates in Views

 A template is a text document, or a normal Python string, that is marked up using

the Django template language. A template can contain block tags and variables.

A block tag is a symbol within a template that does something. This definition is deli-

berately vague. For example, a block tag can produce content, serve as a control structure
(an if statement or for loop), grab content from a database, or enable access to other tem-
plate tags.

Block tags are surrounded by {% and %}:

{% if is_logged_in %}
 Thanks for logging in!
{% else %}
 Please log in.
{% endif %}

 A variable is a symbol within a template that outputs a value. Variable tags are sur-

rounded by {{ and }}:
My first name is {{ first_name }}. My last name is {{ last_name }}

A context is a name-value mapping (similar to a Python dictionary) that is passed to a

template.
A template renders a context by replacing the variable “holes” with values from the

context and executing all block tags.
Below example shows that Template is integrated into index.html.

#index.html
{% extends "main.html" %}
{% block content %}
<h1>{{ title }}</h1>
<div class="container">

</div>
{% endblock content %}

#views.py
from django.shortcuts import render
def index(request):
context = {
 'title': 'This is Index Page.',
}
return render(request, 'index.html', context)

render() is a special Django helper function that creates a shortcut for communicat-

ing with a web browser.

UNIT- 2 Introduction to Web framework and DJango DJango Template System

68 Prepared By: Prof. Hardik Chavda

You can code each of these steps separately in Django, but in the vast majority of
cases it’s more common (and easier) to use Django’s render() function, which provides a
shortcut that provides all three steps in a single function.

When you supply the original request, the template and a context directly
to render(), it returns the appropriately formatted response without you having to code the
intermediate steps.

In our modified views.py, we are returning the original request object from the

browser, the name of our site template and a dictionary (the context) containing our title
and cal variables from the view.

Once you have modified your views.py file, save it and fire up the development serv-
er. If you navigate to http://127.0.0.1:8000/index/

UNIT- 2 Introduction to Web framework and DJango DJango Template System

69 Prepared By: Prof. Hardik Chavda

Template loading

Generally, you’ll store templates in files on your filesystem, but you can use custom

template loaders to load templates from other sources.
Django has two ways to load templates:

 django.template.loader.get_template(template_name): get_template returns the
compiled template (a Template object) for the template with the given name. If the
template doesn’t exist, a TemplateDoesNotExist exception will be raised.

 django.template.loader.select_template(template_name_list): select_template is
just like get_template, except it takes a list of template names. Of the list, it returns
the first template that exists. If none of the templates exist, a TemplateDoesNotExist
exception will be raised.

Each of these functions by default uses your TEMPLATE_DIRS setting to load tem-
plates. Internally, however, these functions actually delegate to a template loader for the
heavy lifting.

Some of loaders are disabled by default, but you can activate them by editing the

TEMPLATE_ LOADERS setting. TEMPLATE_LOADERS should be a tuple of strings, where
each string represents a template loader. These template loaders ship with Django:

 django.template.loaders.filesystem.load_template_source: This loader loads tem-
plates from the filesystem, according to TEMPLATE_DIRS. It is enabled by default.

 django.template.loaders.app_directories.load_template_source: This loader loads
templates from Django applications on the filesystem. For each application in IN-
STALLED_ APPS, the loader looks for a templates subdirectory. If the directory exists,
Django looks for templates there.

This means you can store templates with your individual applications, making
it easy to distribute Django applications with default templates. For example, if IN-
STALLED_APPS contains ('myproject.polls', 'myproject.music'), then
get_template('foo.html') will look for templates in this order:

 /path/to/myproject/polls/templates/foo.html

 /path/to/myproject/music/templates/foo.html
Note that the loader performs an optimization when it is first imported: it

caches a list of the INSTALLED_APPS packages that have a templates subdirectory.
This loader is enabled by default.

 django.template.loaders.eggs.load_template_source: This loader is just like
app_directories, except it loads templates from Python eggs rather than from the fi-
lesystem. This loader is disabled by default; you’ll need to enable it if you’re using
eggs to distribute your application.

 Django uses the template loaders in order according to the TEMPLATE_LOADERS
setting. It uses each loader until a loader finds a match

UNIT- 3 Interaction with Database

70 Prepared By: Prof. Hardik Chavda

Configuring database

Open up mysite/settings.py. It’s a normal Python module with module-level variables

representing Django settings.

By default, the configuration uses SQLite. If you’re new to databases, or you’re just in-

terested in trying Django, this is the easiest choice. SQLite is included in Python, so you
won’t need to install anything else to support your database. When starting your first real
project, however, you may want to use a more scalable database like PostgreSQL, to avoid
database-switching headaches down the road.

 ENGINE – Ei-

ther 'django.db.backends.sqlite3', 'django.db.backends.postgresql', 'django.db.bac
kends.mysql', or 'django.db.backends.oracle'. Other backends are also available.

 NAME – The name of your database. If you’re using SQLite, the database will be a file
on your computer; in that case, NAME should be the full absolute path, including fi-
lename, of that file. The default value, os.path.join(BASE_DIR, 'db.sqlite3'), will
store the file in your project directory.

While you’re editing mysite/settings.py, set TIME_ZONE to your time zone.Also,

note the INSTALLED_APPS setting at the top of the file. That holds the names of all Django
applications that are activated in this Django instance. Apps can be used in multiple
projects, and you can package and distribute them for use by others in their projects.

By default, INSTALLED_APPS contains the following apps, all of which come with Django:

 django.contrib.admin – The admin site. You’ll use it shortly.
 django.contrib.auth – An authentication system.
 django.contrib.contenttypes – A framework for content types.
 django.contrib.sessions – A session framework.
 django.contrib.messages – A messaging framework.
 django.contrib.staticfiles – A framework for managing static files.

These applications are included by default as a convenience for the common case.

Some of these applications make use of at least one database table, though, so we need to
create the tables in the database before we can use them. To do that, run the following
command:

python manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK

UNIT- 3 Interaction with Database

71 Prepared By: Prof. Hardik Chavda

 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying auth.0008_alter_user_username_max_length... OK
 Applying sessions.0001_initial... OK

 The migrate command looks at the INSTALLED_APPS setting and creates any neces-
sary database tables according to the database settings in your mysite/settings.py file and
the database migrations shipped with the app (we’ll cover those later). You’ll see a message
for each migration it applies.

UNIT- 3 Interaction with Database

72 Prepared By: Prof. Hardik Chavda

Defining models
Now we’ll define your models – essentially, your database layout, with additional

metadata. In our simple poll app, we’ll create two models: Question and Choice.
A Question has a question and a publication date. A Choice has two fields: the text of the
choice and a vote tally. Each Choice is associated with a Question.

These concepts are represented by simple Python classes. Edit

the polls/models.py file so it looks like this:

 # polls/models.py
from django.db import models

class Question(models.Model):
 question_text = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')

class Choice(models.Model):
 question = models.ForeignKey(Question, on_delete=models.CASCADE)
 choice_text = models.CharField(max_length=200)
 votes = models.IntegerField(default=0)

The code is straightforward. Each model is represented by a class that sub-

classes django.db.models.Model. Each model has a number of class variables, each of which
represents a database field in the model.

Each field is represented by an instance of a Field class – e.g., CharField for character
fields and DateTimeField for datetimes. This tells Django what type of data each field holds.
The name of each Field instance (e.g. question_text or pub_date) is the field’s name, in ma-
chine-friendly format. You’ll use this value in your Python code, and your database will use it
as the column name.

You can use an optional first positional argument to a Field to designate a human-
readable name. That’s used in a couple of introspective parts of Django, and it doubles as
documentation. If this field isn’t provided, Django will use the machine-readable name. In
this example, we’ve only defined a human-readable name for Question.pub_date. For all
other fields in this model, the field’s machine-readable name will suffice as its human-
readable name.

Some Field classes have required arguments. CharField, for example, requires that
you give it a max_length. That’s used not only in the database schema, but in validation, as
we’ll soon see.

A Field can also have various optional arguments; in this case, we’ve set
the default value of votes to 0.

Finally, note a relationship is defined, using ForeignKey. That tells Django
each Choice is related to a single Question. Django supports all the common database rela-
tionships: many-to-one, many-to-many, and one-to-one.

UNIT- 3 Interaction with Database

73 Prepared By: Prof. Hardik Chavda

 Let’s run another command:

 python manage.py makemigrations
You should see something similar to the following:
Migrations for 'polls':
 polls/migrations/0001_initial.py:
 - Create model Choice
 - Create model Question
 - Add field question to choice

By running makemigrations, you’re telling Django that you’ve made some changes
to your models (in this case, you’ve made new ones) and that you’d like the changes to be
stored as a migration.

Migrations are how Django stores changes to your models (and thus your database

schema) - they’re just files on disk. You can read the migration for your new model if you
like; it’s the file polls/migrations/0001_initial.py. Don’t worry, you’re not expected to read
them every time Django makes one, but they’re designed to be human-editable in case you
want to manually tweak how Django changes things.

Now, run migrate again to create those model tables in your database:

 python manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, polls, sessions
Running migrations:
 Rendering model states... DONE
 Applying polls.0001_initial... OK

The migrate command takes all the migrations that haven’t been applied (Django

tracks which ones are applied using a special table in your database
called django_migrations) and runs them against your database - essentially, synchronizing
the changes you made to your models with the schema in the database.

Migrations are very powerful and let you change your models over time, as you develop

your project, without the need to delete your database or tables and make new ones - it
specializes in upgrading your database live, without losing data. We’ll cover them in more
depth in a later part of the tutorial, but for now, remember the three-step guide to making
model changes:

 Change your models (in models.py).
 Run python manage.py makemigrations to create migrations for those changes
 Run python manage.py migrate to apply those changes to the database.

The reason that there are separate commands to make and apply migrations is be-

cause you’ll commit migrations to your version control system and ship them with your app;
they not only make your development easier, they’re also useable by other developers and
in production.

UNIT- 3 Interaction with Database

74 Prepared By: Prof. Hardik Chavda

Basic data access

Now, let’s hop into the interactive Python shell and play around with the free API

Django gives you. To invoke the Python shell, use this command:

python manage.py shell

 We’re using this instead of simply typing “python”, because manage.py sets

the DJANGO_SETTINGS_MODULE environment variable, which gives Django the Python im-
port path to your mysite/settings.py file.

Inserting /Creating Objects
 You get a QuerySet by using your model’s Manager. Each model has at least

 one Manager, and it’s called objects by default.

>>> from polls.models import Question
>>> qi = Question(question_text='What is your name?',pub_date='2019-08-08 00:00:00')
>>> qi.save()

 This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the

 database until you explicitly call save(). The save() method has no return value.

Selecting objects
 To retrieve objects from your database, construct a QuerySet via a Manager on your

 model class.

 A QuerySet represents a collection of objects from your database. It can have zero,

 one or many filters. Filters narrow down the query results based on the given para
 meters. In SQL terms, a QuerySet equates to a SELECT statement, and a filter is a li
 miting clause such as WHERE or LIMIT.

 You get a QuerySet by using your model’s Manager. Each model has at least

 one Manager, and it’s called objects by default.

 The Manager is the main source of QuerySets for a model. For exam

 ple, Blog.objects.all() returns a QuerySet that contains all Blog objects in the data
 base.

 The simplest way to retrieve objects from a table is to get all of them. To do this, use

 the all() method on a Manager:

>>>Question.objects.all()
QuerySet [<Question: Question object>, <Question: Question object>]>

UNIT- 3 Interaction with Database

75 Prepared By: Prof. Hardik Chavda

If you have seen that in above output we are having multiple Question Objects that
are not showing which record are inserted.
To represent them properly in model.py inside Questions class define __str__ func-
tion to describe the returned result when you query the objects.

class Question(models.Model):
 question_text = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')

 def __str__(self):
 return self.question_text

Now run the below command to check again.

>>>Question.objects.all()
<QuerySet [<Question: What is your name?>, <Question: What is your name?>]>

From above output you can that objects have been replaced with Name of the ques-
tion and also we can see one problem that we have inserted multiple records. To
solve such problem we will update the records by retrieving with ids.

Retrieving a single object with get()

 If you know there is only one object that matches your query, you can use

 the get() method on a Manager which returns the object directly:

>>> Question.objects.get(id=1)
<Question: What is your name?>

>>> Question.objects.get(id=2)
<Question: What is your name?>

Updating Objects
 To save changes to an object that’s already in the database, we will get object with
 id inside “qu” variable to retrieve the whole record and use save() to make changes
 in that table of database.

>>> qu = Question.objects.get(id=2)
>>> qu.question_text='What is Your Age?'
>>> qu.save()

>>> Question.objects.get(id=2)
<Question: What is Your Age?>

>>> Question.objects.all()
<QuerySet [<Question: What is your name?>, <Question: What is Your Age?>]>

In above output updation is successful.

UNIT- 3 Interaction with Database

76 Prepared By: Prof. Hardik Chavda

Deleting objects

The delete method, conveniently, is named delete(). This method immediately de-
letes the object and returns the number of objects deleted and a dictionary with the
number of deletions per object type.

To delete record let us create/insert a new record inside Question table.

>>> qi = Question(question_text='Where do you live?',pub_date='2019-08-08 00:00:00')
>>> qi.save()

 Let us see the new record is inserted inside table.

>>> Question.objects.all()
 <QuerySet [<Question: What is your name?>, <Question: What is Your Age?>, <Ques

 tion: Where do you live?>, <Question: Where do you live?>]>

 Let us delete the inserted record.

>>> qd = Question.objects.get(id=3)
>>> qd.delete()
 (1, {'testApp.Choice': 0, 'testApp.Question': 1})

 Let us check that objects is deleted or not.

>>> Question.objects.get(id=3)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
 File "C:\Users\STUD\Envs\VitualDjango\lib\site-

packages\django\db\models\manager.py", line 85, in manager_method
 return getattr(self.get_queryset(), name)(*args, **kwargs)
 File "C:\Users\STUD\Envs\VitualDjango\lib\site-

packages\django\db\models\query.py", line 385, in get
 self.model._meta.object_name
testApp.models.DoesNotExist: Question matching query does not exist.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

77 Prepared By: Prof. Hardik Chavda

Activating the Admin interface

 One of the most powerful parts of Django is the automatic admin interface. It reads
metadata from your models to provide a quick, model-centric interface where trusted users
can manage content on your site. The admin’s recommended use is limited to an organiza-
tion’s internal management tool. It’s not intended for building your entire front end around.

 The admin has many hooks for customization, but beware of trying to use those
hooks exclusively. If you need to provide a more process-centric interface that abstracts
away the implementation details of database tables and fields, then it’s probably time to
write your own views.

Overview
The admin is enabled in the default project template used by startproject.
For reference, here are the requirements:

1. Add 'django.contrib.admin' to your INSTALLED_APPS setting.
2. The admin has four dependencies - django.contrib.auth, djan-

go.contrib.contenttypes, django.contrib.messages and django.contrib.sessions. If
these applications are not in your INSTALLED_APPS list, add them.

Application definition
 = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog1',
]

3. Add django.contrib.auth.context_processors.auth and django.contrib.messages.co
ntext_processors.messages to the 'context_processors' option of
the DjangoTemplates backend defined in your TEMPLATES as well
as django.contrib.auth.middleware.AuthenticationMiddleware and django.contrib.
messages.middleware.MessageMiddleware to MIDDLEWARE. These are all active
by default, so you only need to do this if you’ve manually tweaked the settings.

MIDDLEWARE = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
]

4. Determine which of your application’s models should be editable in the admin inter-
face.

5. For each of those models, optionally create a ModelAdmin class that encapsulates
the customized admin functionality and options for that particular model.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

78 Prepared By: Prof. Hardik Chavda

6. Instantiate an AdminSite and tell it about each of your models
and ModelAdmin classes.

 from django.contrib import admin
 from .models import studInfo
 # Register your models here.
 admin.site.register(studInfo)

7. Hook the AdminSite instance into your URLconf.

 from django.contrib import admin
urlpatterns = [
 url(r'^admin/', admin.site.urls)
]

8. If you need to create a user to login with, you can use

the createsuperuser command.

 (HELLOW~1) D:\Python\testDjango\testDjango>python manage.py createsuperuser
 {'Telegram', 'Postcard', 'Radio'}
 Username (leave blank to use 'hardikchavda'):
 Email address: hardikkchavda@gmail.com
 Password:
 Password (again):
 Superuser created successfully.

 (HELLOW~1) D:\Python\testDjango\testDjango>python manage.py runserver

9. Than open your browser and open adminpanel by writing

http://127.0.0.1:8000/admin and you will see the login screen page.

10. Login Using the username and password you created with createsuperuser com-

mand.

11. That’s it you’ve successfully created the admin panel for your application.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

79 Prepared By: Prof. Hardik Chavda

Using the Admin site

 Django admin site administration panel is useful for all types of CRUD operations
with selected database. By Default after creating SuperUser you will be able to see Authen-
tication and Authorization Panel which administers Users and their roles for Database
Tables.

Two Databse Default objects Groups and Users will be on TOP, which manages Roles
for all the tables created with Models.

Groups will be empty by default and Users will have all ther users you have created

with superuser command.

User panel lets you show all the users listed and with their details you can search us-

ers by using the searchbar.

On the right side panel you can filters the Users by their Status.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

80 Prepared By: Prof. Hardik Chavda

 On entering the user page you can manage a users Personal Info, Permissions and
Important Dates.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

81 Prepared By: Prof. Hardik Chavda

Adding Records

 All the other tables created by user through models will be listed below Authentica-
tion and Authorizationa panel. By clicking on Add user can insert records inside the table.

 A user can enter records here and can save the details, on clicking Save and add
another the form will be insert the records and reset the form for another record to save.

 On Clicking Save and continue editing Record will be inserted and form will be filled
with values inserted. On Clicking Save record will be inserted and you will redirect to pre-
vious page.

Note: Remember django forms will inherit validations from models such as (null=True,
blank=True) etc.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

82 Prepared By: Prof. Hardik Chavda

Updating and Deleting Records

 On Cliking on change button django admin shows you list of available records inside
the table and by clicking on them records are fetched from the database to either delete or
update the record.

 You will see Delete Button and Save Buttons which you can use make changes to cur-
rent record.

 You can also delete multiple records from the tables list view if required, remember
when you delete either single or multiple records another screen will appear for confirma-
tion of deletion.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

83 Prepared By: Prof. Hardik Chavda

django.contrib package

 Django aims to follow Python’s “batteries included” philosophy. It ships with a varie-
ty of extra, optional tools that solve common Web-development problems.
 This code lives in django/contrib in the Django distribution. This document gives a
rundown of the packages in contrib, along with any dependencies those packages have.

 The Django admin site
 django.contrib.auth
 The contenttypes framework
 The flatpages app
 GeoDjango
 django.contrib.humanize
 The messages framework
 django.contrib.postgres
 The redirects app
 The sitemap framework
 The “sites” framework
 The staticfiles app
 The syndication feed framework

admin: The automatic Django administrative interface. Requires the auth and contenttypes
contrib packages to be installed.

auth: Django’s authentication framework.

contenttypes: A light framework for hooking into “types” of content, where each installed
Django model is a separate content type.

flatpages: A framework for managing simple “flat” HTML content in a database. Requires
the sites contrib package to be installed as well.

gis: A world-class geospatial framework built on top of Django, that enables storage, mani-
pulation and display of spatial data.

humanize: A set of Django template filters useful for adding a “human touch” to data.

messages: A framework for storing and retrieving temporary cookie- or session-based mes-
sages

postgres: A collection of PostgreSQL specific features.

redirects: A framework for managing redirects.

sessions: A framework for storing data in anonymous sessions.

sites: A light framework that lets you operate multiple websites off of the same database
and Django installation. It gives you hooks for associating objects to one or more sites.

sitemaps: A framework for generating Google sitemap XML files.

syndication: A framework for generating syndication feeds, in RSS and Atom, quite easily.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

84 Prepared By: Prof. Hardik Chavda

Form Basics
HTML forms

In HTML, a form is a collection of elements inside <form>...</form> that allow a visi-
tor to do things like enter text, select options, manipulate objects or controls, and so on,
and then send that information back to the server.

Some of these form interface elements - text input or checkboxes - are fairly simple
and are built into HTML itself. Others are much more complex; an interface that pops up a
date picker or allows you to move a slider or manipulate controls will typically use JavaScript
and CSS as well as HTML form <input> elements to achieve these effects.
As well as its <input> elements, a form must specify two things:

 where: the URL to which the data corresponding to the user’s input should be re-
turned

 how: the HTTP method the data should be returned by
As an example, the login form for the Django admin contains sever-

al <input> elements: one of type="text" for the username, one of type="password" for the
password, and one of type="submit" for the “Log in” button. It also contains some hidden
text fields that the user doesn’t see, which Django uses to determine what to do next.

It also tells the browser that the form data should be sent to the URL specified in
the <form>’s action attribute - /admin/ - and that it should be sent using the HTTP mechan-
ism specified by the method attribute - post.

When the <input type="submit" value="Log in"> element is triggered, the data is
returned to /admin/.

GET and POST
 GET and POST are the only HTTP methods to use when dealing with forms.Django’s
login form is returned using the POST method, in which the browser bundles up the form
data, encodes it for transmission, sends it to the server, and then receives back its response.
 GET, by contrast, bundles the submitted data into a string, and uses this to compose
a URL. The URL contains the address where the data must be sent, as well as the data keys
and values. You can see this in action if you do a search in the Django documentation, which
will produce a URL of the form

https://docs.djangoproject.com/search/?q=forms&release=1.

GET and POST are typically used for different purposes.
 Any request that could be used to change the state of the system - for example, a
request that makes changes in the database - should use POST. GET should be used only for
requests that do not affect the state of the system.
 GET would also be unsuitable for a password form, because the password would ap-
pear in the URL, and thus, also in browser history and server logs, all in plain text. Neither
would it be suitable for large quantities of data, or for binary data, such as an image. A Web
application that uses GET requests for admin forms is a security risk: it can be easy for an
attacker to mimic a form’s request to gain access to sensitive parts of the system. POST,
coupled with other protections like Django’s CSRF protection offers more control over
access.
 On the other hand, GET is suitable for things like a web search form, because the
URLs that represent a GET request can easily be bookmarked, shared, or resubmitted.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

85 Prepared By: Prof. Hardik Chavda

Form Validation

 Form validation happens when the data is cleaned. If you want to customize this
process, there are various places to make changes, each one serving a different purpose.
Three types of cleaning methods are run during form processing. These are normally ex-
ecuted when you call the is_valid() method on a form. There are other things that can also
trigger cleaning and validation (accessing the errors attribute or calling full_clean() directly),
but normally they won’t be needed.

 In general, any cleaning method can raise ValidationError if there is a problem with
the data it is processing, passing the relevant information to
the ValidationError constructor. If no ValidationError is raised, the method should return
the cleaned (normalized) data as a Python object.

 Most validation can be done using validators - simple helpers that can be reused eas-
ily. Validators are simple functions (or callables) that take a single argument and
raise ValidationError on invalid input. Validators are run after the
field’s to_python and validate methods have been called.

Validation of a form is split into several steps, which can be customized or overridden:

 The to_python() method on a Field is the first step in every validation. It coerces the
value to a correct datatype and raises ValidationError if that is not possible. This me-
thod accepts the raw value from the widget and returns the converted value. For ex-
ample, a FloatField will turn the data into a Python float or raise a ValidationError.

 The validate() method on a Field handles field-specific validation that is not suitable
for a validator. It takes a value that has been coerced to a correct datatype and rais-
es ValidationError on any error. This method does not return anything and shouldn’t
alter the value. You should override it to handle validation logic that you can’t or
don’t want to put in a validator.

 The run_validators() method on a Field runs all of the field’s validators and aggre-
gates all the errors into a single ValidationError. You shouldn’t need to override this
method.

 The clean() method on a Field subclass is responsible for run-
ning to_python(), validate(), and run_validators() in the correct order and propagat-
ing their errors. If, at any time, any of the methods raise ValidationError, the valida-
tion stops and that error is raised. This method returns the clean data, which is then
inserted into the cleaned_data dictionary of the form.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

86 Prepared By: Prof. Hardik Chavda

Rendering forms
The Form class
 We already know what we want our HTML form to look like. Our starting point for it
in Django is this:

#forms.py

 from django import forms
 class NameForm(forms.Form):
 your_name = forms.CharField(label='Your name', max_length=100)

 This defines a Form class with a single field (your_name). We’ve applied a human-
friendly label to the field, which will appear in the <label> when it’s rendered (although in
this case, the label we specified is actually the same one that would be generated automati-
cally if we had omitted it).

 The field’s maximum allowable length is defined by max_length. This does two
things. It puts a maxlength="100" on the HTML <input> (so the browser should prevent the
user from entering more than that number of characters in the first place). It also means
that when Django receives the form back from the browser, it will validate the length of the
data.
 A Form instance has an is_valid() method, which runs validation routines for all its
fields. When this method is called, if all fields contain valid data, it will:

 return True
 place the form’s data in its cleaned_data attribute.

The whole form, when rendered for the first time, will look like:

<label for="your_name">Your name: </label>
<input id="your_name" type="text" name="your_name" maxlength="100" required>

Note that it does not include the <form> tags, or a submit button. We’ll have to provide
those ourselves in the template.

The view
 Form data sent back to a Django website is processed by a view, generally the same
view which published the form. This allows us to reuse some of the same logic. To handle
the form we need to instantiate it in the view for the URL where we want it to be published:

#views.py

from django.http import HttpResponseRedirect

from django.shortcuts import render
from .forms import NameForm

def get_name(request):
 # if this is a POST request we need to process the form data

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

87 Prepared By: Prof. Hardik Chavda

 if request.method == 'POST':
 # create a form instance and populate it with data from the request:
 form = NameForm(request.POST)
 # check whether it's valid:
 if form.is_valid():
 # process the data in form.cleaned_data as required
 # redirect to a new URL:
 return HttpResponseRedirect('/thanks/')
 # if a GET (or any other method) we'll create a blank form
 else:
 form = NameForm()
 return render(request, 'name.html', {'form': form})

 If we arrive at this view with a GET request, it will create an empty form instance and
place it in the template context to be rendered. This is what we can expect to happen the
first time we visit the URL.
 If the form is submitted using a POST request, the view will once again create a form
instance and populate it with data from the request: form = NameForm(request.POST) This
is called “binding data to the form” (it is now a bound form).
 We call the form’s is_valid() method; if it’s not True, we go back to the template
with the form. This time the form is no longer empty (unbound) so the HTML form will be
populated with the data previously submitted, where it can be edited and corrected as re-
quired.
 If is_valid() is True, we’ll now be able to find all the validated form data in
its cleaned_data attribute. We can use this data to update the database or do other
processing before sending an HTTP redirect to the browser telling it where to go next.

The template
We don’t need to do much in our name.html template. The simplest example is:

 <form action="/your-name/" method="post">
 {% csrf_token %}
 {{ form }}
 <input type="submit" value="Submit">
 </form>

 All the form’s fields and their attributes will be unpacked into HTML markup from
that {{ form }} by Django’s template language.

Widgets
 Each form field has a corresponding Widget class, which in turn corresponds to an
HTML form widget such as <input type="text">.
 In most cases, the field will have a sensible default widget. For example, by default,
a CharField will have a TextInput widget, that produces an <input type="text"> in the
HTML. If you needed <textarea> instead, you’d specify the appropriate widget when defin-
ing your form field, as we have done for the message field.

Working with form templates

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

88 Prepared By: Prof. Hardik Chavda

 All you need to do to get your form into a template is to place the form instance into
the template context. So if your form is called form in the context, {{ form }} will render
its <label> and <input> elements appropriately.

There are other output options though for the <label>/<input> pairs:

{{ form.as_table }} will render them as table cells wrapped in <tr> tags
{{ form.as_p }} will render them wrapped in <p> tags
{{ form.as_ul }} will render them wrapped in tags

Note that you’ll have to provide the surrounding <table> or elements yourself.
Here’s the output of {{ form.as_p }} for our ContactForm instance:

<p><label for="id_subject">Subject:</label>
 <input id="id_subject" type="text" name="subject" maxlength="100" required></p>
<p><label for="id_message">Message:</label>
 <textarea name="message" id="id_message" required></textarea></p>
<p><label for="id_sender">Sender:</label>
 <input type="email" name="sender" id="id_sender" required></p>
<p><label for="id_cc_myself">Cc myself:</label>
 <input type="checkbox" name="cc_myself" id="id_cc_myself"></p>

Rendering fields manually
 We don’t have to let Django unpack the form’s fields; we can do it manually if we
like (allowing us to reorder the fields, for example). Each field is available as an attribute of
the form using {{ form.name_of_field }}, and in a Django template, will be rendered appro-
priately. For example:

{{ form.non_field_errors }}
<div class="fieldWrapper">
 {{ form.subject.errors }}
 <label for="{{ form.subject.id_for_label }}">Email subject:</label>
 {{ form.subject }}
</div>
<div class="fieldWrapper">
 {{ form.message.errors }}
 <label for="{{ form.message.id_for_label }}">Your message:</label>
 {{ form.message }}
</div>
<div class="fieldWrapper">
 {{ form.sender.errors }}
 <label for="{{ form.sender.id_for_label }}">Your email address:</label>
 {{ form.sender }}
</div>
<div class="fieldWrapper">
 {{ form.cc_myself.errors }}
 <label for="{{ form.cc_myself.id_for_label }}">CC yourself?</label>
 {{ form.cc_myself }}
</div>

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

89 Prepared By: Prof. Hardik Chavda

ModelForm

class ModelForm
 If you’re building a database-driven app, chances are you’ll have forms that map
closely to Django models. For instance, you might have a BlogComment model, and you
want to create a form that lets people submit comments. In this case, it would be redundant
to define the field types in your form, because you’ve already defined the fields in your
model.
 For this reason, Django provides a helper class that lets you create a Form class from
a Django model.

Field types
 The generated Form class will have a form field for every model field specified, in the
order specified in the fields attribute.
 Each model field has a corresponding default form field. For example, a CharField on
a model is represented as a CharField on a form. A model ManyToManyField is represented
as a MultipleChoiceField. Here is the full list of conversions:
Model field Form field

AutoField Not represented in the form

BigAutoField Not represented in the form

BigIntegerField IntegerField with min_value set to -9223372036854775808
and max_value set to 9223372036854775807.

BinaryField CharField, if editable is set to True on the model field, otherwise not
represented in the form.

BooleanField BooleanField, or NullBooleanField if null=True.

CharField CharField with max_length set to the model
field’s max_length and empty_value set to None if null=True.

DateField DateField

DateTimeField DateTimeField

DecimalField DecimalField

EmailField EmailField

FileField FileField

FilePathField FilePathField

FloatField FloatField

ForeignKey ModelChoiceField

ImageField ImageField

IntegerField IntegerField

IPAddressField IPAddressField

GenericIPAddressField GenericIPAddressField

ManyToManyField ModelMultipleChoiceField

NullBooleanField NullBooleanField

PositiveIntegerField IntegerField

PositiveSmallIntegerField IntegerField

SlugField SlugField

SmallIntegerField IntegerField

TextField CharField with widget=forms.Textarea

TimeField TimeField

URLField URLField

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

90 Prepared By: Prof. Hardik Chavda

 As you might expect, the ForeignKey and ManyToManyField model field types are
special cases:

 ForeignKey is represented by django.forms.ModelChoiceField, which is
a ChoiceField whose choices are a model QuerySet.

 ManyToManyField is represented by django.forms.ModelMultipleChoiceField,
which is a MultipleChoiceField whose choices are a model QuerySet.

In addition, each generated form field has attributes set as follows:
 If the model field has blank=True, then required is set to False on the form field.

Otherwise, required=True.
 The form field’s label is set to the verbose_name of the model field, with the first

character capitalized.
 The form field’s help_text is set to the help_text of the model field.
 If the model field has choices set, then the form field’s widget will be set to Select,

with choices coming from the model field’s choices. The choices will normally in-
clude the blank choice which is selected by default. If the field is required, this forces
the user to make a selection. The blank choice will not be included if the model field
has blank=False and an explicit default value (the default value will be initially se-
lected instead).

A full example

Consider this set of models:

 class dataForm(forms.ModelForm):

 rname = forms.CharField(max_length=150,

 label="Student Name",

 min_length=10,

 widget=forms.Textarea

)

 class Meta:

 model = studInfo

 fields = '__all__'

Selecting the fields to use

 It is strongly recommended that you explicitly set all fields that should be edited in

the form using the fields attribute. Failure to do so can easily lead to security problems

when a form unexpectedly allows a user to set certain fields, especially when new fields are

added to a model. Depending on how the form is rendered, the problem may not even be

visible on the web page.

 The alternative approach would be to include all fields automatically, or blacklist on-

ly some. This fundamental approach is known to be much less secure and has led to serious

exploits on major websites (e.g. GitHub).

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

91 Prepared By: Prof. Hardik Chavda

 There are, however, two shortcuts available for cases where you can guarantee

these security concerns do not apply to you:

 Set the fields attribute to the special value '__all__' to indicate that all fields in the

model should be used. For example:

 from django.forms import ModelForm

 class AuthorForm(ModelForm):

 class Meta:

 model = studInfo

 fields = '__all__'

 Set the exclude attribute of the ModelForm’s inner Meta class to a list of fields to be

excluded from the form.

Example:

 class PartialAuthorForm(ModelForm):

 class Meta:

 model = studInfo

 exclude = ['title']

 Since the studInfo model has the 3 fields name, title and birth_date, this will result

in the fields name and birth_date being present on the form.

 If either of these are used, the order the fields appear in the form will be the order

the fields are defined in the model, with ManyToManyField instances appearing last.

 In addition, Django applies the following rule: if you set editable=False on the model

field, any form created from the model via ModelForm will not include that field.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

92 Prepared By: Prof. Hardik Chavda

The View Layer
 Django has the concept of “views” to encapsulate the logic responsible for
processing a user’s request and for returning the response.

 The basics: URLconfs | View functions | Shortcuts | Decorators
 Reference: Built-in Views | Request/response objects | TemplateResponse objects
 File uploads: Overview | File objects | Storage API | Managing files | Custom storage
 Class-based views: Overview | Built-in display views | Built-in editing views | Using

mixins | API reference | Flattened index
 Advanced: Generating CSV | Generating PDF
 Middleware: Overview | Built-in middleware classes

URL dispatcher

 A clean, elegant URL scheme is an important detail in a high-quality Web application.

Django lets you design URLs however you want, with no framework limitations.

 See Cool URIs don’t change, by World Wide Web creator Tim Berners-Lee, for excel-

lent arguments on why URLs should be clean and usable.

Writing views

 A view function, or view for short, is simply a Python function that takes a Web re-

quest and returns a Web response. This response can be the HTML contents of a Web page,

or a redirect, or a 404 error, or an XML document, or an image . . . or anything, really. The

view itself contains whatever arbitrary logic is necessary to return that response. This code

can live anywhere you want, as long as it’s on your Python path. There’s no other require-

ment–no “magic,” so to speak. For the sake of putting the code somewhere, the convention

is to put views in a file called views.py, placed in your project or application directory.

Django shortcut functions

 The package django.shortcuts collects helper functions and classes that “span” mul-

tiple levels of MVC. In other words, these functions/classes introduce controlled coupling for

convenience’s sake.

 render()

 render_to_response

 redirect

 get_object_or_404

 get_list_or_404

Built-In Views

 Error views

 The 404 (page not found) view

 The 500 (server error) view

 The 403 (HTTP Forbidden) view

 The 400 (bad request) view

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

93 Prepared By: Prof. Hardik Chavda

Request and Response objects
 Django uses request and response objects to pass state through the system.When a
page is requested, Django creates an HttpRequest object that contains metadata about the
request. Then Django loads the appropriate view, passing the HttpRequest as the first ar-
gument to the view function. Each view is responsible for returning an HttpResponse object.

File Uploads

 When Django handles a file upload, the file data ends up placed in request.FILES (for

more on the request object see the documentation for request and response objects). This

document explains how files are stored on disk and in memory, and how to customize the

default behavior.

Class-based views

 A view is a callable which takes a request and returns a response. This can be more

than just a function, and Django provides an example of some classes which can be used as

views. These allow you to structure your views and reuse code by harnessing inheritance

and mixins. There are also some generic views for simple tasks which we’ll get to later, but

you may want to design your own structure of reusable views which suits your use case

 At its core, a class-based view allows you to respond to different HTTP request me-

thods with different class instance methods, instead of with conditionally branching code

inside a single view function.

Outputting PDFs with Django

 This is made possible by the excellent, open-source ReportLab Python PDF library.

The advantage of generating PDF files dynamically is that you can create customized PDFs

for different purposes – say, for different users or different pieces of content.

Middleware

 Middleware is a framework of hooks into Django’s request/response processing. It’s

a light, low-level “plugin” system for globally altering Django’s input or output.

 Each middleware component is responsible for doing some specific function. For ex-

ample, Django includes a middleware component, AuthenticationMiddleware, that asso-

ciates users with requests using sessions.

 This document explains how middleware works, how you activate middleware, and

how to write your own middleware. Django ships with some built-in middleware you can

use right out of the box.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

94 Prepared By: Prof. Hardik Chavda

Requesting a Web Page via URL
 A clean, elegant URL scheme is an important detail in a high-quality Web application.
Django lets you design URLs however you want, with no framework limitations.

 To design URLs for an app, you create a Python module informally called
a URLconf (URL configuration). This module is pure Python code and is a simple mapping
between URL patterns (simple regular expressions) to Python functions (your views).

 This mapping can be as short or as long as needed. It can reference other mappings.
And, because it’s pure Python code, it can be constructed dynamically.

How Django processes a request
 When a user requests a page from your Django-powered site, this is the algorithm
the system follows to determine which Python code to execute:

1. Django determines the root URLconf module to use. Ordinarily, this is the value of
the ROOT_URLCONF setting, but if the incoming HttpRequest object has an attribute
called urlconf (set by middleware request processing), its value will be used in place
of the ROOT_URLCONF setting.

2. Django loads that Python module and looks for the variable urlpatterns. This should
be a Python list, in the format returned by the function django.conf.urls.patterns().

3. Django runs through each URL pattern, in order, and stops at the first one that
matches the requested URL.

4. Once one of the regexes matches, Django imports and calls the given view, which is a
simple Python function (or a class based view). The view gets passed the following
arguments:

o An instance of HttpRequest.
o If the matched regular expression returned no named groups, then the

matches from the regular expression are provided as positional arguments.
o The keyword arguments are made up of any named groups matched by the

regular expression, overridden by any arguments specified in the option-
al kwargs argument to django.conf.urls.url().

5. If no regex matches, or if an exception is raised during any point in this process,
Django invokes an appropriate error-handling view. See Error handling below.

Example

from django.conf.urls import patterns, url
from . import views
urlpatterns = patterns('',
 url(r'^articles/2003/$', views.special_case_2003),
 url(r'^articles/(\d{4})/$', views.year_archive),
 url(r'^articles/(\d{4})/(\d{2})/$', views.month_archive),
 url(r'^articles/(\d{4})/(\d{2})/(\d+)/$', views.article_detail),
)

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

95 Prepared By: Prof. Hardik Chavda

Notes:
 To capture a value from the URL, just put parenthesis around it.
 There’s no need to add a leading slash, because every URL has that. For example,

it’s ^articles, not ^/articles.
 The 'r' in front of each regular expression string is optional but recommended. It tells

Python that a string is “raw” – that nothing in the string should be escaped.

 A convenient trick is to specify default parameters for your views’ arguments. Here’s
an example URLconf and view:

URLconf
from django.conf.urls import patterns, url
from . import views
urlpatterns = patterns('',
 url(r'^blog/$', views.page),
 url(r'^blog/page(?P<num>\d+)/$', views.page),
)

View (in blog/views.py)
def page(request, num="1"):
 # Output the appropriate page of blog entries, according to num.
 ...

 In the above example, both URL patterns point to the same view – views.page – but
the first pattern doesn’t capture anything from the URL. If the first pattern matches,
the page() function will use its default argument for num, "1". If the second pattern
matches, page() will use whatever num value was captured by the regex.

The view prefix
If you do use strings, it is possible to specify a common prefix in your patterns() call.

 from django.conf.urls import patterns, url
urlpatterns = patterns('',
 url(r'^articles/(\d{4})/$', 'news.views.year_archive'),
 url(r'^articles/(\d{4})/(\d{2})/$', 'news.views.month_archive'),
 url(r'^articles/(\d{4})/(\d{2})/(\d+)/$', 'news.views.article_detail'),
)

Multiple view prefixes

 In practice, you’ll probably end up mixing and matching views to the point where the

views in your urlpatterns won’t have a common prefix. However, you can still take advan-

tage of the view prefix shortcut to remove duplication.

from django.conf.urls import patterns, url

urlpatterns = patterns('myapp.views',

 url(r'^$', 'app_index'),

 url(r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/$','month_display'),

)

urlpatterns += patterns('weblog.views',

 url(r'^tag/(?P<tag>\w+)/$', 'tag'),

)

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

96 Prepared By: Prof. Hardik Chavda

Rendering Web Page via View Function
 A view function, or view for short, is simply a Python function that takes a Web re-
quest and returns a Web response. This response can be the HTML contents of a Web page,
or a redirect, or a 404 error, or an XML document, or an image . . . or anything, really. The
view itself contains whatever arbitrary logic is necessary to return that response. This code
can live anywhere you want, as long as it’s on your Python path. There’s no other require-
ment–no “magic,” so to speak. For the sake of putting the code somewhere, the convention
is to put views in a file called views.py, placed in your project or application directory.

A simple view
Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse
import datetime

def current_datetime(request):
 now = datetime.datetime.now()
 html = "<html><body>It is now %s.</body></html>" % now
 return HttpResponse(html)

Let’s step through this code one line at a time:

 First, we import the class HttpResponse from the django.http module, along with
Python’s datetime library.

 Next, we define a function called current_datetime. This is the view function. Each
view function takes an HttpRequest object as its first parameter, which is typically
named request.
Note that the name of the view function doesn’t matter; it doesn’t have to be named in a
certain way in order for Django to recognize it. We’re calling it current_datetime here, be-
cause that name clearly indicates what it does.

 The view returns an HttpResponse object that contains the generated response.
Each view function is responsible for returning an HttpResponse object. (There are
exceptions, but we’ll get to those later.)

Returning errors

 Returning HTTP error codes in Django is easy. There are subclasses
of HttpResponse for a number of common HTTP status codes other than 200 (which
means “OK”). You can find the full list of available subclasses in
the request/response documentation. Just return an instance of one of those subclasses in-
stead of a normal HttpResponse in order to signify an error. For example:

from django.http import HttpResponse, HttpResponseNotFound
def my_view(request):
 # ...
 if foo:
 return HttpResponseNotFound('<h1>Page not found</h1>')
 else:
 return HttpResponse('<h1>Page was found</h1>')

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

97 Prepared By: Prof. Hardik Chavda

 There isn’t a specialized subclass for every possible HTTP response code, since many
of them aren’t going to be that common. However, as documented in
the HttpResponse documentation, you can also pass the HTTP status code into the con-
structor for HttpResponse to create a return class for any status code you like. For example:
from django.http import HttpResponse

def my_view(request):
 # ...
 # Return a "created" (201) response code.
 return HttpResponse(status=201)

 Because 404 errors are by far the most common HTTP error, there’s an easier way to
handle those errors.

The Http404 exception
class django.http.Http404

 When you return an error such as HttpResponseNotFound, you’re responsible for
defining the HTML of the resulting error page:

 return HttpResponseNotFound('<h1>Page not found</h1>')

 For convenience, and because it’s a good idea to have a consistent 404 error page
across your site, Django provides an Http404 exception. If you raise Http404 at any point in
a view function, Django will catch it and return the standard error page for your application,
along with an HTTP error code 404.

Example:
from django.http import Http404
from django.shortcuts import render
from polls.models import Poll

def detail(request, poll_id):
 try:
 p = Poll.objects.get(pk=poll_id)
 except Poll.DoesNotExist:
 raise Http404("Poll does not exist")
 return render(request, 'polls/detail.html', {'poll': p})

 In order to show customized HTML when Django returns a 404, you can create an
HTML template named 404.html and place it in the top level of your template tree. This
template will then be served when DEBUG is set to False.

 When DEBUG is True, you can provide a message to Http404 and it will appear in the
standard 404 debug template. Use these messages for debugging purposes; they generally
aren’t suitable for use in a production 404 template.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

98 Prepared By: Prof. Hardik Chavda

Render HTTPResponse to Templates

 Standard HttpResponse objects are static structures. They are provided with a block

of pre-rendered content at time of construction, and while that content can be modified, it

isn’t in a form that makes it easy to perform modifications.

 However, it can sometimes be beneficial to allow decorators or middleware to modi-

fy a response after it has been constructed by the view. For example, you may want to

change the template that is used, or put additional data into the context.

 TemplateResponse provides a way to do just that. Unlike ba-

sic HttpResponse objects, TemplateResponse objects retain the details of the template and

context that was provided by the view to compute the response. The final output of the re-

sponse is not computed until it is needed, later in the response process.

TemplateResponse objects

class TemplateResponse

 TemplateResponse is a subclass of SimpleTemplateResponse that uses

a RequestContext instead of a Context.

Methods

 TemplateResponse.__init__(request,

 template,

 context=None,

 content_type=None,

 status=None,

 current_app=None)

 Instantiates an TemplateResponse object with the given template, context, MIME

type and HTTP status.

request : An HttpRequest instance.

template:The full name of a template, or a sequence of template

names. Template instances can also be used.

context: A dictionary of values to add to the template context. By default, this is an empty

dictionary. Context objects are also accepted as context values. If you pass

a Context instance or subclass, it will be used instead of creating a new RequestContext.

status: The HTTP Status code for the response.

content_type : The value included in the HTTP Content-Type header, including the MIME

type specification and the character set encoding. If content_type is specified, then its value

is used. Otherwise, DEFAULT_CONTENT_TYPE is used.

current_app: A hint indicating which application contains the current view. See

the namespaced URL resolution strategy for more information.

UNIT- 4 Django Admin Site & Forms, Views and URLConfs

99 Prepared By: Prof. Hardik Chavda

Understanding Context Data and Python Dictionary Type

 When you use a Django Template, it is compiled once (and only once) and stored for

future use, as an optimization. A template can have variable names in double curly braces,

such as {{ myvar1 }} and {{ myvar2 }}.

 A Context is a dictionary with variable names as the key and their values as
the value. Hence, if your context for the above template looks like: {myvar1: 101, myvar2:
102}, when you pass this context to the template render method, {{ myvar1 }} would be re-
placed with 101 and {{ myvar2 }} with 102 in your template. This is a simplistic example, but
really a Context object is the context in which the template is being rendered.

 As for a ContextProcessor, that is a slightly advanced concept. You can have in
your settings.py file listed a few Context Processors which take in an HttpRequest object and
return a dictionary (similar to the Context object above). The dictionary (context) returned
by the Context Processor is merged into the context passed in by you (the user) by Django.

 A use case for a Context Processor is when you always want to insert certain va-
riables inside your template (for example the location of the user could be a candidate). In-
stead of writing code to insert it in each view, you could simply write a context processor for
it and add it to the TEMPLATE_CONTEXT_PROCESSORS settings in settings.py.

Rendering a context
 Once you have a compiled Template object, you can render a context with it. You
can reuse the same template to render it several times with different contexts.

class Context(dict_=None)
 The constructor of django.template.Context takes an optional argument — a dictio-
nary mapping variable names to variable values.

Template.render(context)
 Call the Template object’s render() method with a Context to “fill” the template:

>>> from django.template import Context, Template
>>> template = Template("My name is {{ my_name }}.")

>>> context = Context({"my_name": "Adrian"})
>>> template.render(context)
"My name is Adrian."

>>> context = Context({"my_name": "Dolores"})
>>> template.render(context)
"My name is Dolores."

UNIT- 5 Session, Cookies, Testing and Deploying web application

100 Prepared By: Prof. Hardik Chavda

Cookies: Getting and Setting Cookies
 A cookie is a small piece of information which is stored in the client browser. It is
used to store user's data in a file permanently (or for the specified time). Cookie has its ex-
piry date and time and removes automatically when gets expire. Django provides built-in
methods to set and fetch cookie.

 The set_cookie() method is used to set a cookie and get() method is used to get the
cookie. The request.COOKIES['key'] array can also be used to get cookie values.
Django Cookie Example

In views.py, two functions setcookie() and getcookie() are used to set and get cookie re-
spectively

// views.py
from django.shortcuts import render
from django.http import HttpResponse

def setcookie(request):
 response = HttpResponse("Cookie Set")
 response.set_cookie('college', 'Geetanjali')
 return response
def getcookie(request):
 clgname = request.COOKIES['college']
 return HttpResponse("College: "+ clgname);

And URLs specified to access these functions.

// urls.py
from django.contrib import admin
from django.urls import path
from myapp import views
urlpatterns = [
 path(r'^admin/', admin.site.urls),
 path(r'^index/', views.index),
 path(r'^setcookie,views.setcookie,name='setcookie'),
 path('r'^getcookie',views.getcookie,name='getcookie')
]

Start Server

$ python3 manage.py runserver

After starting the server, set cookie by using localhost:8000/setcookie URL. It shows the

following output to the browser.

UNIT- 5 Session, Cookies, Testing and Deploying web application

101 Prepared By: Prof. Hardik Chavda

Session: Django’s session
 A session is a mechanism to store information on the server side during the interac-
tion with the web application.

 In Django, by default session stores in the database and also allows file-based and
cache based sessions. It is implemented via a piece of middleware and can be enabled by
using the following code.

 Put django.contrib.sessions.middleware.SessionMiddleware in MIDDLEWARE and
django.contrib.sessions in INSTALLED_APPS of settings.py file.

 To set and get the session in views, we can use request.session and can set multiple
times too.

 The class backends.base.SessionBase is a base class of all session objects. It contains
the following standard methods.

Method Description

__getitem__(key) It is used to get session value.

__setitem__(key, value) It is used to set session value.

__delitem__(key) It is used to delete session object.

__contains__(key) It checks whether the container contains the particular session
object or not.

get(key, default=None) It is used to get session value of the specified key.

 Let's see an example in which we will set and get session values. Two functions are
defined in the views.py file.

The first function is used to set and the second is used to get session values.

//views.py
from django.shortcuts import render
from django.http import HttpResponse

def setsession(request):
 request.session['lecturer'] = 'HardikChavda'
 request.session['semail'] = 'hardikkchavda@gmail.com'
 return HttpResponse("Session is Set")
def getsession(request):
 sname = request.session['lecturer']
 semail = request.session['semail']
 return HttpResponse(sname +" "+ semail);

Url mapping to call both the functions.

// urls.py
from django.contrib import admin
from django.urls import path

UNIT- 5 Session, Cookies, Testing and Deploying web application

102 Prepared By: Prof. Hardik Chavda

from myapp import views
urlpatterns = [
 path('admin/', admin.site.urls),
 path('index/', views.index),
 path('ssession',views.setsession),
 path('gsession',views.getsession)
]

Run Server

> python manage.py runserver
And set the session by using localhost:8000/setsession

Session Outside Views

>>> from django.contrib.sessions.backends.db import SessionStore
>>> s = SessionStore()
>>> # stored as seconds since epoch since datetimes are not serializable in JSON.
>>> s['last_login'] = 1376587691
>>> s.create()
>>> s.session_key
'2b1189a188b44ad18c35e113ac6ceead'
>>> s = SessionStore(session_key='2b1189a188b44ad18c35e113ac6ceead')
>>> s['last_login']
1376587691

 SessionStore.create() is designed to create a new session (i.e. one not loaded from
the session store and with session_key=None). save() is designed to save an existing session
(i.e. one loaded from the session store). Calling save() on a new session may also work but
has a small chance of generating a session_key that collides with an existing
one. create() calls save() and loops until an unused session_key is generated.

UNIT- 5 Session, Cookies, Testing and Deploying web application

103 Prepared By: Prof. Hardik Chavda

Testing Django
Testing is an important but often neglected part of any Django project. In this tutori-

al we’ll review testing best practices and example code that can be applied to any Django
app.

Broadly speaking there are two types of tests you need to run:

 Unit Tests are small, isolated, and focus on one specific function.
 Integration Tests are aimed at mimicking user behavior and combine multiple pieces

of code and functionality.

 While we might we use a unit test to confirm that the homepage returns an HTTP
status code of 200, an integration test might mimic the entire registration flow of a user.
For all tests the expectation is that the result is either expected, unexpected, or an error. An
expected result would be a 200 response on the homepage, but we can–and should–also
test that the homepage does not return something unexpected, like a 404 response. Any-
thing else would be an error requiring further debugging.

The main focus of testing should be unit tests. You can’t write too many of them.

They are far easier to write, read, and debug than integration tests. They are also quite fast
to run.

When to run tests

The short answer is all the time! Practically speaking whenever code is pushed or
pulled from a repo to a staging environment is ideal. A continuous integration service can
perform this automatically. You should also re-run all tests when upgrading software pack-
ages, especially Django itself.

Layout

By default all new apps in a Django project come with a tests.py file. Any test within
this file that starts with test_ will be run by Django’s test runner. Make sure all test files
start with test_.

As projects grow in complexity, it’s recommended to delete this initial tests.py file
and replace it with an app-level tests folder that contains individual tests files for each area
of functionality.

Example:

|__app
 |__tests
 |-- __init__.py
 |-- test_forms.py
 |-- test_models.py
 |-- test_views.py

UNIT- 5 Session, Cookies, Testing and Deploying web application

104 Prepared By: Prof. Hardik Chavda

 On the command line run the following commands to start our new project. We’ll

place the code in a folder called testy on the Desktop, but you can locate the code anywhere

you choose.

(testy) D:\Python\testy> django-admin startproject myproject .

(testy) D:\Python\testy>python manage.py startapp pages

Now update settings.py to add our new pages app and configure Django to look for a

project-level templates folder.

myproject/settings.py

INSTALLED_APPS = [

 'django.contrib.admin',

 .

 .

 'pages.apps.PagesConfig', # new

]

TEMPLATES = [

 ...

 'DIRS': [os.path.join(BASE_DIR, 'templates')], # new

 ...

]

Create our two templates to test for a homepage and about page.

(testy) D:\Python\testy> mkdir templates

(testy) D:\Python\testy> cd templates/home.html

(testy) D:\Python\testy> cd templates/about.html

Populate the templates with the following simple code.

<!-- templates/home.html -->

<h1>Homepage</h1>

<!-- templates/about.html -->

<h1>About page</h1>

Update the project-level urls.py file to point to the pages app.

myproject/urls.py

from django.contrib import admin

from django.urls import path, include # new

urlpatterns = [

 path('admin/', admin.site.urls),

 path('', include('pages.urls')), # new

]

UNIT- 5 Session, Cookies, Testing and Deploying web application

105 Prepared By: Prof. Hardik Chavda

Create a urls.py file within the pages app.

(testy) D:\Python\testy> cd pages/urls.py

Then update it as follows:

pages/urls.py

from django.urls import path

from .views import HomePageView, AboutPageView

urlpatterns = [

 path('', HomePageView.as_view(), name='home'),

 path('about/', AboutPageView.as_view(), name='about'),

]

And as a final step add our views.

pages/views.py

from django.views.generic import TemplateView

class HomePageView(TemplateView):

 template_name = 'home.html'

class AboutPageView(TemplateView):

 template_name = 'about.html'

Start up the local Django server.

(testy) D:\Python\testy> python manage.py runserver

 Then navigate to the homepage at http://127.0.0.1:8000/ and about page at

http://127.0.0.1:8000/about to confirm everything is working.

UNIT- 5 Session, Cookies, Testing and Deploying web application

106 Prepared By: Prof. Hardik Chavda

Time for tests.

SimpleTestCase

Our Django application only has two static pages at the moment. There’s no data-

base involved which means we should use SimpleTestCase.

We can use the existing pages/tests.py file for our tests for now. Take a look at the

code below which adds five tests for our homepage. First we test that it exists and returns

a 200 HTTP status code. Then we confirm that it uses the url named home. We check that

the template used is home.html, the HTML matches what we’ve typed so far, and even test

that it does not contain incorrect HTML. It’s always good to test

both expected and unexpected behavior.

pages/tests.py

from django.http import HttpRequest

from django.test import SimpleTestCase

from django.urls import reverse

from pages import views

class HomePageTests(SimpleTestCase):

 def test_home_page_status_code(self):

 response = self.client.get('/')

 self.assertEquals(response.status_code, 200)

 def test_view_url_by_name(self):

 response = self.client.get(reverse('home'))

 self.assertEquals(response.status_code, 200)

 def test_view_uses_correct_template(self):

 response = self.client.get(reverse('home'))

 self.assertEquals(response.status_code, 200)

 self.assertTemplateUsed(response, 'home.html')

 def test_home_page_contains_correct_html(self):

 response = self.client.get('/')

 self.assertContains(response, '<h1>Homepage</h1>')

 def test_home_page_does_not_contain_incorrect_html(self):

 response = self.client.get('/')

 self.assertNotContains(

 response, 'Hi there! I should not be on the page.')

UNIT- 5 Session, Cookies, Testing and Deploying web application

107 Prepared By: Prof. Hardik Chavda

Now run the tests.

(testy) D:\Python\testy> python manage.py test

They should all pass.

As an exercise, see if you can add a class for AboutPageTests in this same file. It

should have the same five tests but will need to be updated slightly. Run the test runner

once complete. The correct code is below so try not to peak…

pages/tests.py

class AboutPageTests(SimpleTestCase):

 def test_about_page_status_code(self):

 response = self.client.get('/about/')

 self.assertEquals(response.status_code, 200)

 def test_view_url_by_name(self):

 response = self.client.get(reverse('about'))

 self.assertEquals(response.status_code, 200)

 def test_view_uses_correct_template(self):

 response = self.client.get(reverse('about'))

 self.assertEquals(response.status_code, 200)

 self.assertTemplateUsed(response, 'about.html')

 def test_about_page_contains_correct_html(self):

 response = self.client.get('/about/')

 self.assertContains(response, '<h1>About page</h1>')

 def test_about_page_does_not_contain_incorrect_html(self):

 response = self.client.get('/')

 self.assertNotContains(

 response, 'Hi there! I should not be on the page.')

Message Board app

Now let’s create our message board app so we can try testing out database queries. First

create another app called posts.

(testy) D:\Python\testy> python manage.py startapp posts

Add it to our settings.py file.

myproject/settings.py

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

UNIT- 5 Session, Cookies, Testing and Deploying web application

108 Prepared By: Prof. Hardik Chavda

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'pages.apps.PagesConfig',

 'posts.apps.PostsConfig', # new

]

Then run migrate to create our initial database.

(testy) D:\Python\testy> python manage.py migrate

Now add a basic model.

posts/models.py

from django.db import models

class Post(models.Model):

 text = models.TextField()

 def __str__(self):

 """A string representation of the model."""

 return self.text

Create a database migration file and activate it.

(testy) D:\Python\testy> python manage.py makemigrations posts

(testy) D:\Python\testy> python manage.py migrate posts

For simplicity we can just a post via the Django admin. So first create a superuser account

and fill in all prompts.

(testy) D:\Python\testy> python manage.py createsuperuser

Update our admin.py file so the posts app is active in the Django admin.

posts/admin.py

from django.contrib import admin

from .models import Post

admin.site.register(Post)

Then restart the Django server with python manage.py runserver and login to the Django

admin at http://127.0.0.1:8000/admin/. You should see the admin’s login screen:

UNIT- 5 Session, Cookies, Testing and Deploying web application

109 Prepared By: Prof. Hardik Chavda

Click on the link for + Add next to Posts. Enter in the simple text Hello world!.

On “save” you’ll see the following page.

UNIT- 5 Session, Cookies, Testing and Deploying web application

110 Prepared By: Prof. Hardik Chavda

Now add our views file.

posts/views.py

from django.views.generic import ListView

from .models import Post

class PostPageView(ListView):

 model = Post

 template_name = 'posts.html'

Create a posts.html template file.

(testy) D:\Python\testy> cd templates/posts.html

And add the code below to simply output all posts in the database.

<!-- templates/posts.html -->

<h1>Message board homepage</h1>

 {% for post in object_list %}

 {{ post.text }}

 {% endfor %}

Finally we need to update our urls.py files. Start with the project-level one.

myproject/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('', include('pages.urls')),

 path('admin/', admin.site.urls),

 path('posts/', include('posts.urls')),

]

Then create a urls.py file in the posts app.

(testy) D:\Python\testy> cd posts/urls.py

And populate it as follows.

posts/urls.py

from django.urls import path

from .views import PostPageView

urlpatterns = [

 path('', PostPageView.as_view(), name='posts'),

]

 Okay, We’re done. Start up the local server python manage.py runserver and navigate to our

new message board page at http://127.0.0.1:8000/posts.

UNIT- 5 Session, Cookies, Testing and Deploying web application

111 Prepared By: Prof. Hardik Chavda

It simply displays our single post entry. Time for tests!

TestCase

 TestCase is the most common class for writing tests in Django. It allows us to mock queries

to the database.

Let’s test out our Post database model.

posts/tests.py

from django.test import TestCase

from django.urls import reverse

from .models import Post

class PostTests(TestCase):

 def setUp(self):

 Post.objects.create(text='just a test')

 def test_text_content(self):

 post = Post.objects.get(id=1)

 expected_object_name = f'{post.text}'

 self.assertEquals(expected_object_name, 'just a test')

 def test_post_list_view(self):

 response = self.client.get(reverse('posts'))

 self.assertEqual(response.status_code, 200)

 self.assertContains(response, 'just a test')

 self.assertTemplateUsed(response, 'posts.html')

With TestCase the Django test runner will create a sample test database just for our tests.

Here we’ve populated it with the text 'just a test'.

In the first test we confirm that the test entry has the primary id of 1 and the content

matches. Then in the second test on the view we confirm that that it uses the url name posts, has a

200 HTTP response status code, contains the correct text, and uses the correct template.

Run the new test to confirm everything works.

(testy) D:\Python\testy> python manage.py test

UNIT- 5 Session, Cookies, Testing and Deploying web application

112 Prepared By: Prof. Hardik Chavda

Unit test

 The unittest unit testing framework was originally inspired by JUnit and has a similar
flavor as major unit testing frameworks in other languages. It supports test automation,
sharing of setup and shutdown code for tests, aggregation of tests into collections, and in-
dependence of the tests from the reporting framework. To achieve this, unittest supports
some important concepts in an object-oriented way:

test fixture
 A test fixture represents the preparation needed to perform one or more tests, and
any associate cleanup actions. This may involve, for example, creating temporary or proxy
databases, directories, or starting a server process.
test case
 A test case is the individual unit of testing. It checks for a specific response to a par-
ticular set of inputs. unittest provides a base class, TestCase, which may be used to create
new test cases.
test suite
 A test suite is a collection of test cases, test suites, or both. It is used to aggregate
tests that should be executed together.
test runner
 A test runner is a component which orchestrates the execution of tests and provides
the outcome to the user. The runner may use a graphical interface, a textual interface, or
return a special value to indicate the results of executing the tests.

Python’s unittest2 library

 unittest2 is a backport of the new features added to the unittest testing framework
in Python 2.7 and onwards. It is tested to run on Python 2.6, 2.7, 3.2, 3.3, 3.4 and pypy. To
use unittest2 instead of unittest simply replace import unittest with import unittest2.
New features include:

 addCleanups - better resource management
 many new assert methods including better defaults for comparing lists, sets, dicts

unicode strings etc and the ability to specify new default methods for comparing
specific types

 assertRaises as context manager, with access to the exception afterwards
 test discovery and new command line options (including failfast and better handling

of ctrl-C during test runs)
 class and module level fixtures: setUpClass, tearDownClass, setUpModule, tear-

DownModule
 test skipping and expected failures
 new delta keyword argument to assertAlmostEqual for more useful comparison and

for comparing non-numeric objects (like datetimes)
 load_tests protocol for loading tests from modules or packages
 startTestRun and stopTestRun methods on TestResult

UNIT- 5 Session, Cookies, Testing and Deploying web application

113 Prepared By: Prof. Hardik Chavda

Django Deployment to Github

 Github is a global repository system which is used for version control. While working

with django, if there is need for version management, it is recommended to use github. We

will create and deploy a django project to the github so that it can be accessible globally.

 Before deploying, it is required to have a github account, otherwise create an ac-

count first by visiting github.com.

 Open the terminal and cd into the project, we want to deploy. For example, our

project name is djangoboot. Then

Install Git

 Goto this link : https://git-scm.com/download/win

 It will download Git.exe

 Run the installer and it will start wizard for installation press next on all steps.

 Then start CommandPrompt/

Initialize Git

Use the following command to start the git.

 D:\HRDK\Python\test\testDjango>git init

 Reinitialized existing Git repository in D:/HRDK/Python/test/testDjango/.git/

Provide global user name email for the project, it is only once, we don?t need to provide it

repeatedly.

D:\HRDK\Python\test\testDjango>git config --global user.name hardikchavda

D:\HRDK\Python\test\testDjango>git config --global user.email hardikkchavda@gmail.com

Create File

 Create a file .gitignore inside the root folder of django project. And put the following

code inside it.

// .gitignore

*.pyc

*~

__pycache__

myvenv

db.sqlite3

/static

.DS_Store

UNIT- 5 Session, Cookies, Testing and Deploying web application

114 Prepared By: Prof. Hardik Chavda

Git Status

 Check the git status by using the following command. It provides some detail to the

screen.

D:\HRDK\Python\test\testDjango>git status

 On branch master

 Your branch is ahead of 'origin/master' by 8 commits.

 (use "git push" to publish your local commits)

 Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: blog1/views.py

 modified: templates/about.html

 Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: blog1/urls.py

 modified: blog1/views.py

 modified: db.sqlite3

After saving, now execute the following command.

D:\HRDK\Python\test\testDjango>git add -all

D:\HRDK\Python\test\testDjango>git commit -m "my app first commit"

Push to Github

 First login into the git account and create a new repository and initialize with

README. See the example.

UNIT- 5 Session, Cookies, Testing and Deploying web application

115 Prepared By: Prof. Hardik Chavda

 My repository name is testDjango. Click on the create repository button. Now reposi-

tory has created. On next page, click on the clone button and copy the http url. In my case, it

is https://github.com/hardikchavda/testDjango.git

Now, use this url with the following command.

D:\HRDK\Python\test\testDjango>git remote add origin https://github.com/hardikchavd

a/testDjango.git

D:\HRDK\Python\test\testDjango>git push -u --force origin master

 Provide username and password of git account. It will start pushing project to the

repository.

 See, our django application has deploy successfully on github. Now, we can access it

globally.

