
UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

The Basics of PHP and Introduction

1 Prepared by: Prof. Hardik Chavda

What is PHP

PHP is an open-source, interpreted, and object-oriented scripting language that can be exe-
cuted at the server-side. PHP is well suited for web development. Therefore, it is used to
develop web applications (an application that executes on the server and generates the dy-
namic page.).

PHP was created by Rasmus Lerdorf in 1994 but appeared in the market in 1995. PHP 8 is
the latest version of PHP. Some important points need to be noticed about PHP are as fol-
lowed:

• PHP stands for Hypertext Preprocessor.

• PHP is an interpreted language, i.e., there is no need for compilation.

• PHP is faster than other scripting languages, for example, ASP and JSP.

• PHP is a server-side scripting language, which is used to manage the dynamic con-
tent of the website.

• PHP can be embedded into HTML.

• PHP is an object-oriented language.

• PHP is an open-source scripting language.

• PHP is simple and easy to learn language.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

The Basics of PHP and Introduction

2 Prepared by: Prof. Hardik Chavda

Why use PHP
PHP is a server-side scripting language, which is used to design the dynamic web applica-
tions with MySQL database.

• It handles dynamic content, database as well as session tracking for the website.

• You can create sessions in PHP.

• It can access cookies variable and also set cookies.

• It helps to encrypt the data and apply validation.

• PHP supports several protocols such as HTTP, POP3, SNMP, LDAP, IMAP, and many
more.

• Using PHP language, you can control the user to access some pages of your website.

• As PHP is easy to install and set up, this is the main reason why PHP is the best lan-
guage to learn.

PHP Features
PHP is very popular language because of its simplicity and open source. There are some im-
portant features of PHP given below:

Performance:
PHP script is executed much faster than those scripts which are written in other languages
such as JSP and ASP. PHP uses its own memory, so the server workload and loading time is
automatically reduced, which results in faster processing speed and better performance.

Open Source:
PHP source code and software are freely available on the web. You can develop all the ver-
sions of PHP according to your requirement without paying any cost. All its components are
free to download and use.

Familiarity with syntax:
PHP has easily understandable syntax. Programmers are comfortable coding with it.

Embedded:
PHP code can be easily embedded within HTML tags and script.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

The Basics of PHP and Introduction

3 Prepared by: Prof. Hardik Chavda

Platform Independent:
PHP is available for WINDOWS, MAC, LINUX & UNIX operating system. A PHP application
developed in one OS can be easily executed in another OS also.

Database Support:
PHP supports all the leading databases such as MySQL, SQLite, ODBC, etc.

Error Reporting -
PHP has predefined error reporting constants to generate an error notice or warning at
runtime. E.g., E_ERROR, E_WARNING, E_STRICT, E_PARSE.

Loosely Typed Language:
PHP allows us to use a variable without declaring its datatype. It will be taken automatically
at the time of execution based on the type of data it contains on its value.

Web servers Support:
PHP is compatible with almost all local servers used today like Apache, Netscape, Microsoft
IIS, etc.

Security:
PHP is a secure language to develop the website. It consists of multiple layers of security to
prevent threads and malicious attacks.

Control:
Different programming languages require long script or code, whereas PHP can do the same
work in a few lines of code. It has maximum control over the websites like you can make
changes easily whenever you want.

A Helpful PHP Community:
It has a large community of developers who regularly updates documentation, tutorials,
online help, and FAQs. Learning PHP from the communities is one of the significant benefits.

Web Development
PHP is widely used in web development nowadays. PHP can develop dynamic websites easi-
ly. But you must have the basic the knowledge of following technologies for web develop-
ment as well.

• HTML, CSS, JavaScript, Ajax, XML and JSON, jQuery

• Prerequisite
Before learning PHP, you must have the basic knowledge of HTML, CSS, and JavaScript. So,
learn these technologies for better implementation of PHP.

HTML - HTML is used to design static webpage.
CSS - CSS helps to make the webpage content more effective and attractive.
JavaScript - JavaScript is used to design an interactive website.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

4 Prepared by: Prof. Hardik Chavda

PHP WITH OOPS CONCEPT
Object-oriented programming is a programming model organized around Object rather than
the actions and data rather than logic.

Class
A class is an entity that determines how an object will behave and what the object will con-
tain. In other words, it is a blueprint or a set of instruction to build a specific type of object.
In PHP, declare a class using the class keyword, followed by the name of the class and a set
of curly braces ({}).

Syntax to Create Class in PHP

<?php
class MyClass {
 // Class properties and methods go here
 }
?>

A class defines an individual instance of the data structure. We define a class once and then
make many objects that belong to it. Objects are also known as an instance.
An object is something that can perform a set of related activities.

Syntax:

<?php
class MyClass {
 // Class properties and methods go here
}
$obj = new MyClass;
var_dump($obj);
?>

Example of class and object:

<?php
class demo {
 private $a= "Hello Geetanjali";
 public function display(){
 echo $this->a;
 }
}
$obj = new demo();
 $obj->display();
?>
Output:
Hello Geetanjali

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

5 Prepared by: Prof. Hardik Chavda

Properties

Class member variables are called "properties". You may also see them referred to using
other terms such as "attributes" or "fields", but for the purposes of this reference we will
use "properties". They are defined by using one of the keywords public, protected, or pri-
vate, followed by a normal variable declaration. This declaration may include an initializa-
tion, but this initialization must be a constant value--that is, it must be able to be evaluated
at compile time and must not depend on run-time information in order to be evaluated.

<?php
class SimpleClass{
// valid as of PHP 5.6.0:
public $var1='hello '.'geetanjali';
// valid as of PHP 5.3.0:
public $var2=<<<college
hello Geetanjali
college;
// valid as of PHP 5.6.0:
public $var3=1+2;
public $var7=array(true,false);
// valid as of PHP 5.3.0:
public $var8=<<<'geet'
hello Geetanjali College
geet;
}
$smpClass= new SimpleClass();
echo $smpClass->var1."
";
echo $smpClass->var2."
";
echo $smpClass->var7[0]."
";
echo $smpClass->var8."
";
?>

OP

hello geetanjali
hello Geetanjali
1
hello Geetanjali College

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

6 Prepared by: Prof. Hardik Chavda

Class Constants

It is possible to define constant values on a per-class basis remaining the same and un-
changeable. Constants differ from normal variables in that you don't use the $ symbol to
declare or use them. The default visibility of class constants is public. It's also possible for
interfaces to have constants.

<?php

class MyClass{

 const geet='constant value';

 function showConstant(){

 echo self::geet;

 }

}

echo MyClass::geet;

$classname="MyClass";

echo $classname::geet;// As of PHP 5.3.0

$class = new MyClass();

$class->showConstant();

echo $class::geet;// As of PHP 5.3.0

?>

OP: constant valueconstantvalueconstantvalueconstant value

Autoloading Classes

Many developers writing object-oriented applications create one PHP source file per class
definition. One of the biggest annoyances is having to write a long list of needed includes at
the beginning of each script (one for each class).

<?php
spl_autoload_register(function ($class _name) {
 include $class _name . '.php';
});
$obj = new MyClass1();
$obj2 = new MyClass2();
?>

In PHP 5, this is no longer necessary. The spl_autoload_register() function registers any
number of autoloaders, enabling for classes and interfaces to be automatically loaded if
they are currently not defined. By registering autoloaders, PHP is given a last chance to load
the class or interface before it fails with an error.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

7 Prepared by: Prof. Hardik Chavda

Constructors and Destructors

Constructor

void __construct ([mixed $args = "" [, $...]])
PHP 5 allows developers to declare constructor methods for classes. Classes which have a
constructor method call this method on each newly-created object, so it is suitable for any
initialization that the object may need before it is used.

For backwards compatibility with PHP 3 and 4, if PHP cannot find a __construct() function
for a given class, it will search for the old-style constructor function, by the name of the
class . Effectively, it means that the only case that would have compatibility issues is if the
class had a method named __construct() which was used for different semantics.

Unlike with other methods, PHP will not generate an E_STRICT level error message
when __construct() is overridden with different parameters than the par-
ent __construct() method has.

<?php
class BaseClass {
 function __construct() {
print "InBaseClass constructor\n";
 }
}
class SubClass extends BaseClass {
 function __construct() {
parent::__construct();
print "InSubClass constructor\n";
 }
}
class OtherSubClass extends BaseClass {
// inherits BaseClass 's constructor
}
// In BaseClass constructor
$obj = new BaseClass ();

// In BaseClass constructor
// In SubClass constructor
$obj = new SubClass ();

// In BaseClass constructor
$obj = new OtherSubClass ();
?>

OP:
In BaseClass constructor
In BaseClass constructor
In SubClass constructor
In BaseClass constructor

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

8 Prepared by: Prof. Hardik Chavda

Destructor

void __destruct (void)
PHP 5 introduces a destructor concept similar to that of other object-oriented languages,
such as C++. The destructor method will be called as soon as there are no other references
to a particular object, or in any order during the shutdown sequence.

Like constructors, parent destructors will not be called implicitly by the engine. In order to
run a parent destructor, one would have to explicitly call parent::__destruct() in the de-
structor body. Also like constructors, a child class may inherit the parent's destructor if it
does not implement one itself.

The destructor will be called even if script execution is stopped using exit(). Calling exit() in a
destructor will prevent the remaining shutdown routines from executing.

<?php
class new Account {
 function happy(){
echo "
hello
";
 }
 function __construct(){

echo "Creating new Savings Account
";
print"Adding MIN Balance : 5000
";
print"-----------------------------
";
print"-----------------------------
";
$this->name="Mr. ABC";

}
 function __destruct(){
print"Auto Generating Complete.
Removing Traces for
".$this->name;
 }
}
$obj= new new Account();
$obj->happy();
?>

Output
Creating new Savings Account
Adding MIN Balance : 5000

hello
Auto Generating Complete.
Removing Traces for Mr. ABC

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

9 Prepared by: Prof. Hardik Chavda

Visibility

The visibility of a property, a method or (as of PHP 7.1.0) a constant can be defined by pre-
fixing the declaration with the keywords public, protected or private. Class members de-
clared public can be accessed everywhere. Members declared protected can be accessed
only within the class itself and by inheriting and parent classes. Members declared as pri-
vate may only be accessed by the class that defines the member.

Property Visibility
Class properties must be defined as public, private, or protected. If declared using var, the
property will be defined as public.

<?php
class MyClass{
public $a='Public ';
protected $b='Protected ';
private $c='Private ';

function printHello() {
echo $this->a;
echo $this->b;
echo $this->c;
 }
}

$obj=new MyClass();
echo $obj->a; // Works
echo $obj->b; // Fatal Error
echo $obj->c; // Fatal Error
$obj->printHello(); // Shows Public, Protected and Private

class MyClass2 extends MyClass{
// We can redeclare the public and protected properties, but not private
public $a='Public 2';
protected $b='Protected 2';

function printHello() {
echo $this->a;
echo $this->b;
echo $this->c;
 }
}

$obj2=new MyClass2();
echo $obj2->a; // Works
echo $obj2->b; // Fatal Error
echo $obj2->c; // Undefined
$obj2->printHello(); // Shows Public 2, Protected 2, Undefined
?>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

10 Prepared by: Prof. Hardik Chavda

Method Visibility
Class methods may be defined as public, private, or protected. Methods declared without
any explicit visibility keyword are defined as public.

<?php

class MyClass{
// Declare a public constructor
public function__construct() { }

// Declare a public method
public functionMyPublic() { }

// Declare a protected method
protected functionMyProtected() { }

// Declare a private method
private functionMyPrivate() { }

// This is public
functionFoo() {
$this->MyPublic();
$this->MyProtected();
$this->MyPrivate();
 }
}

$myclass= new MyClass;
$myclass->MyPublic(); // Works
$myclass->MyProtected(); // Fatal Error
$myclass->MyPrivate(); // Fatal Error
$myclass->Foo(); // Public,Protected and Private work
class MyClass2 extends MyClass{
// This is public
function Foo2()
 {
$this->MyPublic();
$this->MyProtected();
$this->MyPrivate(); // Fatal Error
 }
}

$myclass2=new MyClass2;
$myclass2->MyPublic(); // Works
$myclass2->Foo2(); // Public and Protected work, not Private

class Bar {
public function test() {
$this->testPrivate();
$this->testPublic();
 }

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

11 Prepared by: Prof. Hardik Chavda

public function testPublic() {
echo"Bar::testPublic\n";
 }

private function testPrivate() {
echo"Bar::testPrivate\n";
 }
}

class Foo extends Bar{
public function testPublic() {
echo"Foo::testPublic\n";
 }

private function testPrivate() {
echo"Foo::testPrivate\n";
 }
}

$myFoo= new Foo();
$myFoo->test(); // Bar::testPrivate
// Foo::testPublic
?>

Constant Visibility
As of PHP 7.1.0, class constants may be defined as public, private, or protected. Constants
declared without any explicit visibility keyword are defined as public.

<?php
class MyClass
{
// Declare a public constant
public const MY_PUBLIC='public ';

// Declare a protected constant
protected const MY_PROTECTED='protected ';

// Declare a private constant
private const MY_PRIVATE='private ';

public function foo()
 {
echo self::MY_PUBLIC ;
echo self::MY_PROTECTED ;
echo self::MY_PRIVATE ;
 }
}

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

12 Prepared by: Prof. Hardik Chavda

$myclass= new MyClass();
MyClass::MY_PUBLIC ; // Works
MyClass::MY_PROTECTED ; // Fatal Error
MyClass::MY_PRIVATE ; // Fatal Error
$myclass->foo(); // Public,Protected and Private work
class MyClass2 extends MyClass
{
// This is public
function foo2()
 {
echo self::MY_PUBLIC ;
echo self::MY_PROTECTED ;
echo self::MY_PRIVATE ; // Fatal Error
 }
}

$myclass2=new MyClass2;
echo MyClass2::MY_PUBLIC ; // Works
$myclass2->foo2(); // Public and Protected work, not Private
?>

Visibility from other objects

Objects of the same type will have access to each other’sprivate andprotected members
even though they are not the same instances. This is because the implementation specific
details are already known when inside those objects.

<?php
class Test{
private $foo;
public function __construct($foo){
$this->foo=$foo;
 }

private function bar(){
echo'Accessed the private method.';
 }

public function baz(Test $other){
// We can change the private property:
$other->foo='hello';
var_dump($other->foo);

// We can also call the private method:
$other->bar();
 }
}
$test= new Test('test');
$test->baz(new Test('other'));
?>
Output: string(5) "hello"Accessed the private method.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

13 Prepared by: Prof. Hardik Chavda

Object Inheritance

Inheritance is a well-established programming principle, and PHP makes use of this principle
in its object model. This principle will affect the way many classes and objects relate to one
another.
For example, when you extend a class, the subclass inherits all of the public and protected
methods from the parent class. Unless a class overrides those methods, they will retain their
original functionality.

This is useful for defining and abstracting functionality, and permits the implementation of
additional functionality in similar objects without the need to re-implement all of the shared
functionality.

<?php
class Foo{
public function printItem($string){
echo'Foo: '.$string. PHP_EOL;
 }

public function printPHP(){
echo'PHP is great.'. PHP_EOL;
 }
}

classBar extends Foo{
public function printItem($string)
 {
echo'Bar: '.$string. PHP_EOL;
 }
}

$foo= new Foo();
$bar= new Bar();
$foo->printItem('baz'); // Output: 'Foo: baz'
$foo->printPHP(); // Output: 'PHP is great'
$bar->printItem('baz'); // Output: 'Bar: baz'
$bar->printPHP(); // Output: 'PHP is great'
?>

Scope Resolution Operator (::)
The Scope Resolution Operator (also called PaamayimNekudotayim) or in simpler terms,
the double colon, is a token that allows access to static, constant, and overridden properties
or methods of a class.

When referencing these items from outside the class definition, use the name of the class.

PaamayimNekudotayim would, at first, seem like a strange choice for naming a double-
colon. However, while writing the Zend Engine 0.5 (which powers PHP 3), that's what the
Zend team decided to call it. It actually does mean double-colon - in Hebrew!

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

14 Prepared by: Prof. Hardik Chavda

<?php
class MyClass {
const CONST_VALUE='A constant value';
}

$class name='MyClass';
echo $class name::CONST_VALUE; // As of PHP 5.3.0

echo MyClass::CONST_VALUE;
?>
OutPut: A constant valueA constant value

Static Keyword
Declaring class properties or methods as static makes them accessible without needing an
instantiation of the class. A property declared as static cannot be accessed with an instanti-
ated class object (though a static method can).

For compatibility with PHP 4, if no visibility declaration is used, then the property or method
will be treated as if it was declared as public.

Static methods

Because static methods are callable without an instance of the object created, the pseudo-
variable $this is not available inside the method declared as static.
<?php
class Foo {
public static function aStaticMethod() {
// ...
 }
}
Foo::aStaticMethod();
$class name='Foo';
$class name::aStaticMethod(); // As of PHP 5.3.0
?>

Static properties

Static properties cannot be accessed through the object using the arrow operator ->.

Like any other PHP static variable, static properties may only be initialized using a literal or
constant before PHP 5.6; expressions are not allowed. In PHP 5.6 and later, the same rules
apply as const expressions: some limited expressions are possible, provided they can be
evaluated at compile time.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value can-
not be a keyword (e.g. self, parent and static).

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

15 Prepared by: Prof. Hardik Chavda

<?php
class Foo{
public static$my_static='foo';

public function staticValue() {
return self::$my_static;
 }
}
class Bar extends Foo{
public function fooStatic() {
returnparent::$my_static;
 }
}
print Foo::$my_static."\n";

$foo= new Foo();
print$foo->staticValue() ."\n";
print$foo->my_static."\n"; // Undefined "Property" my_static

print$foo::$my_static."\n";
$class name='Foo';
print$class name::$my_static."\n"; // As of PHP 5.3.0

print Bar::$my_static."\n";
$bar= new Bar();
print$bar->fooStatic() ."\n";
?>

Predefined Variables

Superglobals — Built-in variables that are always available in all scopes
$GLOBALS — References all variables available in global scope
$_SERVER — Server and execution environment information
$_GET — HTTP GET variables
$_POST — HTTP POST variables
$_FILES — HTTP File Upload variables
$_REQUEST — HTTP Request variables
$_SESSION — Session variables
$_ENV — Environment variables
$_COOKIE — HTTP Cookies
$php_errormsg — The previous error message
$http_response_header — HTTP response headers
$argc — The number of arguments passed to script
$argv — Array of arguments passed to script

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

16 Prepared by: Prof. Hardik Chavda

Exceptions
PHP try and catch are the blocks with the feature of exception handling, which contain the
code to handle exceptions. They play an important role in exception handling. There is one
more important keyword used with the try-catch block is throw. The throw is a keyword
that is used to throw an exception.
Each try block must have at least one catch block. On the other hand, a try block can also
have multiple catch blocks to handle various classes of exception.

try
The try block contains the code that may contain an exception. An exception raised in try
block during runtime is caught by the catch block. Therefore, each try block must have at
least one catch block. It consists of the block of code in which an exception can occur.
Following points needs to be noted about the try:

• The try block must be followed by a catch or finally block.

• A try block must have at least one catch block.

• There can be multiple catch blocks with one try block.

catch
The catch block catches the exception raised in the try block. It contains the code to catch
the exception, which is thrown by throw keyword in the try block. The catch block executes
when a specific exception is thrown. PHP looks for the matching catch block and assigns the
exception object to a variable.
Following points to be noted about the catch:

• There can be more than one catch block with a try.

• The thrown exception is caught and resolved by one or more catch.

• The catch block is always used with a try block. It cannot be used alone.

• It comes just after the try block.

throw
It is a keyword, which is used to throw an exception. Note that one throw at least has one
"catch block" to catch the exception.

It lists the exceptions thrown by function, which cannot be handled by the function itself.

finally
It is a block that contains the essential code of the program to execute. The finally block is
also used for clean-up activity in PHP. It is similar to the catch block, which is used to handle
exception. The only difference is that it always executes whether an exception is handled or
not.

The finally block can be specified after or in place of catch block. It always executes just after
the try and catch block whether an exception has been thrown or not, and before the nor-
mal execution restarts. It is useful in the following scenarios - Closing of database connec-
tion, stream.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

17 Prepared by: Prof. Hardik Chavda

<?php
//user-defined function with an exception
function checkNumber($num) {
 if($num>=1) {
 //throw an exception
 throw new Exception("Value must be less than 1");
 }
 return true;
}

//trigger an exception in a "try" block
try {
 checkNumber(5);
 //If the exception throws, below text will not be display
 echo 'If you see this text, the passed value is less than 1';
}

//catch exception
catch (Exception $e) {
 echo 'Exception Message: ' .$e->getMessage();
}
finally {
 echo '</br> It is finally block, which always executes.';
}
?>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

18 Prepared by: Prof. Hardik Chavda

Class Abstraction
PHP 5 introduces abstract classes and methods. Classes defined as abstract may not be in-
stantiated, and any class that contains at least one abstract method must also be abstract.
Methods defined as abstract simply declare the method's signature - they cannot define the
implementation.

When inheriting from an abstract class, all methods marked abstract in the parent's class
declaration must be defined by the child; additionally, these methods must be defined with
the same (or a less restricted) visibility. For example, if the abstract method is defined as
protected, the function implementation must be defined as either protected or public, but
not private. Furthermore the signatures of the methods must match, i.e. the type hints and
the number of required arguments must be the same. For example, if the child class defines
an optional argument, where the abstract method's signature does not, there is no conflict
in the signature. This also applies to constructors as of PHP 5.4. Before 5.4 constructor sig-
natures could differ.

<?php
abstract class AbstractClass{

// Force Extending class to define this method
abstract protected function getValue();
abstract protected function prefixValue($prefix);

// Common method
public function printOut() {
print $this->getValue() ."
"; }
}
class ConcreteClass1 extends AbstractClass {
protected function getValue() {
return"ConcreteClass 1"; }
public function prefixValue($prefix) {
return"{$prefix}ConcreteClass 1";
 }
}
class ConcreteClass2 extends AbstractClass {
public function getValue() {
return"ConcreteClass 2";
 }
public function prefixValue($prefix) {
return"{$prefix}ConcreteClass 2";
 }
}
$class 1= new ConcreteClass 1;
$class 1->printOut();
echo $class 1->prefixValue('FOO_') ."
";

$class 2= new ConcreteClass 2;
$class 2->printOut();
echo $class 2->prefixValue('FOO_') ."
";
?>

The above example will output:
ConcreteClass 1
FOO_ConcreteClass 1
ConcreteClass 2
FOO_ConcreteClass 2

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

19 Prepared by: Prof. Hardik Chavda

Object Interfaces
Object interfaces allow you to create code which specifies which methods a class must im-
plement, without having to define how these methods are implemented.

Interfaces are defined in the same way as a class, but with the interface keyword replacing
the class keyword and without any of the methods having their contents defined. All meth-
ods declared in an interface must be public; this is the nature of an interface.

Note that it is possible to declare a constructor in an interface, what can be useful in some
contexts, e.g. for use by factories.

implements
To implement an interface, the implements operator is used. All methods in the interface
must be implemented within a class; failure to do so will result in a fatal error. Classes may
implement more than one interface if desired by separating each interface with a comma.

Constants
It's possible for interfaces to have constants. Interface constants work exactly like class con-
stants except they cannot be overridden by a class /interface that inherits them.

<?php
interface car{
 function setModel($name);
 function getModel();
 const abc='CONST';
}
interface petrol{
 function setPetrol($avg);
 function getPetrol();
}
class minicar implements car, petrol{
 public $model;
 public $average;
 function setModel($name){
 $this->model=$name;
 }
 function getModel(){
 return $this->model;
 }
 function setPetrol($avg){
 $this->average=$avg;
 }
 function getPetrol(){
 return$this->average;
 }
}
$test=newminicar();
$test->setModel('Tata Nano');
$test->setPetrol('15');

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

20 Prepared by: Prof. Hardik Chavda

echo car::abc;
echo $test->getModel();
echo $test->getPetrol();
?>
OUTPUT : CONSTTata Nano15

Anonymous classes
Support for anonymous classes was added in PHP 7. Anonymous classes are useful when
simple, one-off objects need to be created.

<?php

$Anonymous=new class{
 private $readOnly = 'Anonymous Class';

 public function printOnly(){
 return $this->readOnly;
 }
};
echo $Anonymous->printOnly();

?>
OUTPUT : Anonymous Class

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

21 Prepared by: Prof. Hardik Chavda

Overloading
Overloading in PHP provides means to dynamically "create" properties and methods. These
dynamic entities are processed via magic methods one can establish in a class for various
action types.

The overloading methods are invoked when interacting with properties or methods that
have not been declared or are not visible in the current scope. The rest of this section will
use the terms "inaccessible properties" and "inaccessible methods" to refer to this combina-
tion of declaration and visibility.
Note : All overloading methods must be defined as public.

Property overloading
 public void __set (string $name, mixed $value)
 public mixed __get (string $name)
 public bool __isset (string $name)
 public void __unset (string $name)
__set() is run when writing data to inaccessible properties.
__get() is utilized for reading data from inaccessible properties.
__isset() is triggered by calling isset() or empty() on inaccessible properties.
__unset() is invoked when unset() is used on inaccessible properties.

The $name argument is the name of the property being interacted with.

The __set() method's $value argument specifies value the $name'ed property should set to.

Property overloading only works in object context. These magic methods will not be trig-
gered in static context. Therefore these methods should not be declared static. As of PHP
5.3.0, a warning is issued if one of the magic overloading methods is declared static.

<?php
class PropertyTest
{
private $data=array();
public function__set($name, $value) {
echo "Setting '$name' to '$value'\n";
$this->data[$name] =$value;
 }

public function__get($name) {
echo "Getting '$name'\n";
return $this->data[$name];
 }

public function__isset($name) {
echo "Is '$name' set?\n";
return isset($this->data[$name]);
 }
public function__unset($name) {
echo"U nsetting '$name'\n";

OutPut

Setting 'a' to '1'
Getting 'a'
1

Is 'a' set?
bool(true)
Unsetting 'a'
Is 'a' set?
bool(false)

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

22 Prepared by: Prof. Hardik Chavda

unset($this->data[$name]);
 }
}

echo"<pre>\n";
$obj=new PropertyTest;
$obj->a=1;
echo$obj->a."\n\n";

var_dump(isset($obj->a));
unset($obj->a);
var_dump(isset($obj->a));

?>

Method overloading

 public mixed __call (string $name, array $arguments)
 public static mixed __callStatic (string $name, array $arguments)
__call() is triggered when invoking inaccessible methods in an object context.
__callStatic() is triggered when invoking inaccessible methods in a static context.

The $name argument is the name of the method being called. The $arguments argument is
an enumerated array containing the parameters passed to the $name'ed method.

<?php
class Overloading{
function __call($name,$args) {
 echo "$name does not exists.
 echo"<pre>";
 print_r ($args);
 echo"</pre>";
}
static function__callStatic($name,$args) {
 echo"$name does not exists.";

 echo"<pre>";
 print_r ($args);
 echo"</pre>";
 }
}
$test=new Overloading;
$test->anything('123',123);
$test::anything('123',123);
?>

OutPut
anything does not exists.
Array
(
 [0] => 123
 [1] => 123
)
anything does not exists.
Array
(
 [0] => 123
 [1] => 123
)

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

23 Prepared by: Prof. Hardik Chavda

Object Iteration
PHP 5 provides a way for objects to be defined so it is possible to iterate through a list of
items, with, for example a foreach statement. By default, all visible properties will be used
for the iteration.

<?php
class iterat{
 public $abc="Hello";
 public $def="Hello";
 public $hij="Hello";
 private $klm="Hello";
 protected $nop="hello";

 function iterate(){
 foreach($this as $key=>$value)
 print "$key =>$value
";
 }
}
$test=new iterat;
echo"<pre>";
$test->iterate();
/*foreach($test as $key => $value){
 echo "$key => $value
";
}*/
//var_export(get_object_vars($test));
?>

Output
abc => Hello
def => Hello
hij => Hello
klm => Hello
nop => hello

Example InterfaceIterator

<?php
class Iterator implements Iterator {
private $myArray;

public function__construct($givenArray) {
$this->myArray=$givenArray;
 }
function rewind() {
 var_dump(__METHOD__);
 return reset($this->myArray);
 }
function current() {
 var_dump(__METHOD__);
 return current($this->myArray);
 }
function key() {
 var_dump(__METHOD__);
 return key($this->myArray);
 }

function next() {
 var_dump(__METHOD__);
 return next($this->myArray);

OUTPUT
string(17) "tIterator::rewind"
string(16) "tIterator::valid"
string(18) "tIterator::current"
string(14) "tIterator::key"
0 => Hello
string(15) "tIterator::next"
string(16) "tIterator::valid"
string(18) "tIterator::current"
string(14) "tIterator::key"
1 => I
string(15) "tIterator::next"
string(16) "tIterator::valid"
string(18) "tIterator::current"
string(14) "tIterator::key"
2 => AM
string(15) "tIterator::next"
string(16) "tIterator::valid"
string(18) "tIterator::current"
string(14) "tIterator::key"
3 => STUDENT
string(15) "tIterator::next"
string(16) "tIterator::valid"

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

24 Prepared by: Prof. Hardik Chavda

 }
function valid() {
 var_dump(__METHOD__);
 return key($this->myArray) !==null;
 }
}
$it= new tIterator(['Hello','I','AM','STUDENT']);
echo"<pre>";
foreach($itas$key=>$value) {
echo"$key =>$value";
echo"
";
}
?>

Example: IteratorAggregate

<?php

class Collection implements IteratorAggregate{
 protected $items;
 public function __construct(array $items) {
 $this->items=$items;
 }

 function getIterator() {
 return new ArrayIterator($this->items);
 }
}

class User{
 public $FirstName;
 public $LastName;
 public $email;
}

$user1=new User;
$user2=new User;

$user1->email='abc@gmail.com';
$user1->FirstName="ABC";
$user1->LastName="XYZ";

$user2->email='def@gmail.com';
$user2->FirstName="DEF";
$user2->LastName="XYZ";

$users=newCollection([$user1,$user2]);

foreach($usersas$user)
{

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

25 Prepared by: Prof. Hardik Chavda

 echo"$user->email";
 echo"$user->FirstName";
 echo"$user->LastName
";
}

?>
OUTPUT
abc@gmail.comABCXYZ
def@gmail.comDEFXYZ

Magic Methods
The function names
__construct(), __destruct(), __call(), __callStatic(), __get(), __set(), __isset(), __unset(),
__sleep(), __wakeup(), __toString(), __invoke(), __set_state(), __clone() and __debugInfo()

are magical in PHP classes. You cannot have functions with these names in any of your clas-
ses unless you want the magic functionality associated with them.

__toString()
public string __toString (void)

The __toString() method allows a class to decide how it will react when it is treated like a
string. For example, what echo $obj; will print. This method must return a string, as other-
wise a fatal E_RECOVERABLE_ERROR level error is emitted.

It is worth noting that before PHP 5.2.0 the __toString() method was only called when it was
directly combined with echo or print. Since PHP 5.2.0, it is called in any string context (e.g.
in printf() with %s modifier) but not in other types contexts (e.g. with %d modifier). Since
PHP 5.2.0, converting objects without __toString() method to string would
cause E_RECOVERABLE_ERROR.

__invoke()
mixed __invoke ([$...])
The __invoke() method is called when a script tries to call an object as a function .

__set_state()
static object __set_state (array $properties)
This static method is called for classes exported by var_export() since PHP 5.1.0.The only
parameter of this method is an array containing exported properties in the
form array('property' => value, ...).

__debugInfo()
array __debugInfo (void)
This method is called by var_dump() when dumping an object to get the properties that
should be shown. If the method isn't defined on an object, then all public,protected and pri-
vate properties will be shown. This feature was added in PHP 5.6.0.

<?php
class MagicMethods{

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

26 Prepared by: Prof. Hardik Chavda

 public $value1;
 public $value2;

/* __construct() __destruct() __get() __set() __isset() __unset() __call() __callStatic() __invoke()
 __clone() __toString() __sleep() __wakeUp() __set_state() __debugInfo() */

 function__invoke(){
 echo"
This is completely out of Bounds.";
 }
 function__clone(){
 echo'
I M John\'s Copy';
 }
 function__toString(){
 return'
Here goes notihng';
 }
 function__debugInfo(){
 echo"<pre>";
 return ["Hello",'sdsdsd',"I am new "];
 echo"</pre>";
 }
 function__set_state($args){
 $test3=newMagicMethods;
 $test3->value1=$args['value1'];
 $test3->value2=$args['value2'];
 return$test3;
 }
}
$test=new MagicMethods;
$test->value1=15;
$test->value2='sdsdsd';
$str=var_export($test, true);
eval($str.";");
var_dump($str);
var_dump(new MagicMethods);
//echo serialize($test);
$test();
$test1=clone$test;
echo$test1;

?>
OUTPUT
string(79) "MagicMethods::__set_state(array('value1' => 15, 'value2' => 'sdsdsd',))"
object(MagicMethods)#2 (3) {
 [0]=>
string(5) "Hello"
 [1]=>
string(6) "sdsdsd"
 [2]=>
string(9) "I am new "
}

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

27 Prepared by: Prof. Hardik Chavda

This is completely out of Bounds.
I M John's Copy
Here goes notihng

__sleep() and __wakeup()
public array __sleep (void)
void __wakeup (void)

serialize() checks if your class has a function with the magic name __sleep(). If so, that
function is executed prior to any serialization. It can clean up the object and is supposed to
return an array with the names of all variables of that object that should be serialized. If the
method doesn't return anything then NULL is serialized andE_NOTICE is issued.

The intended use of __sleep() is to commit pending data or perform similar cleanup tasks.
Also, the function is useful if you have very large objects which do not need to be saved
completely.

Conversely, unserialize() checks for the presence of a function with the magic
name __wakeup(). If present, this function can reconstruct any resources that the object
may have.
The intended use of __wakeup() is to reestablish any database connections that may have
been lost during serialization and perform other reinitialization tasks.

<?php
class demoSleepWakeup {

public $arrayM=array(1, 2, 3, 4);

public function__sleep() {
return array('arrayM');
 }

public function__wakeup() {
 echo"array restarted ";
 }
}

$obj=new demoSleepWakeup();
$serializedStr=serialize($obj);
echo"<pre>";
var_dump($serializedStr);
var_dump(unserialize($serializedStr));
echo"</pre>";
?>

OutPut
string(78)
"O:15:"demoSleepWakeup":1:{s:6:"arrayM";a:4:{i:0
;i:1;i:1;i:2;i:2;i:3;i:3;i:4;}}"
array restarted object(demoSleepWakeup)#2 (1) {
 ["arrayM"]=>
array(4) {
 [0]=>
int(1)
 [1]=>
int(2)
 [2]=>
int(3)
 [3]=>
int(4)
 }
}

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

28 Prepared by: Prof. Hardik Chavda

Final Keyword
PHP 5 introduces the final keyword, which prevents child classes from overriding a method
by prefixing the definition with final. If the class itself is being defined final then it cannot be
extended.

Example # Final methods example

<?php
class BaseClass {
 public function test() {
 echo "BaseClass::test() called\n";
 }
 final public function moreTesting() {
 echo "BaseClass::moreTesting() called\n";
 }
}
class ChildClass extends BaseClass {
 public function moreTesting() {
 echo "ChildClass::moreTesting() called\n";
 }
}
// Results in Fatal error: Cannot override final method BaseClass::moreTesting()
?>

Example #2 Final class example

<?php
final class BaseClass {
 public function test() {
 echo "BaseClass::test() called\n";
 }
 // Here it doesn't matter if you specify the function as final or not
 final public function moreTesting() {
 echo "BaseClass::moreTesting() called\n";
 }
}
class ChildClass extends BaseClass {
}
// Results in Fatal error: Class ChildClass may not inherit from final class (BaseClass)
?>

Object Cloning

Creating a copy of an object with fully replicated properties is not always the wanted behav-
ior. A good example of the need for copy constructors, is if you have an object which repre-
sents a GTK window and the object holds the resource of this GTK window, when you create
a duplicate you might want to create a new window with the same properties and have the
new object hold the resource of the new window. Another example is if your object holds a
reference to another object which it uses and when you replicate the parent object you
want to create a new instance of this other object so that the replica has its own separate
copy.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

29 Prepared by: Prof. Hardik Chavda

An object copy is created by using the clone keyword (which calls the ob-
ject's __clone() method if possible). An object's __clone() method cannot be called directly.

$copy_of_object = clone $object;
When an object is cloned, PHP 5 will perform a shallow copy of all of the object's properties.
Any properties that are references to other variables will remain references.

void __clone (void)
Once the cloning is complete, if a __clone() method is defined, then the new ly created ob-
ject's __clone() method will be called, to allow any necessary properties that need to be
changed.

<?php
class BOX {
 public $name="Hello";
 }

$box=new BOX();
//$box->name= "Hello";

$box_ref=$box;
//DUPLICATE
//$box_ref->name="Sorry";

$box_clone=clone $box;
//$box_clone->name="NO";

$box_change=clone $box;
//$box_change->name="Hello";

$another_box=new BOX();
//$another_box->name="New";

//Comparison
echo $box==$box_ref?'true
':'false
'; //true
echo $box==$box_clone?'true
':'false
'; //true
echo $box==$box_change?'true
':'false
'; //true
echo $box==$another_box?'true
':'false
'; //true
//Identity Comparison
echo $box===$box_ref?'true
':'false
'; //true
echo $box===$box_clone?'true
':'false
'; //false
echo $box===$box_change?'true
':'false
'; //false
echo $box===$another_box?'true
':'false
'; //false
?>

Comparing Objects
When using the comparison operator (==), object variables are compared in a simple man-
ner, namely: Two object instances are equal if they have the same attributes and values
(values are compared with ==), and are instances of the same class.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

30 Prepared by: Prof. Hardik Chavda

When using the identity operator (===), object variables are identical if and only if they refer
to the same instance of the same class.

Type Hinting
Type declarations

Note: Type declarations were also known as type hints in PHP 5.

Type declarations allow functions to require that parameters are of a certain type at call
time. If the given value is of the incorrect type, then an error is generated: in PHP 5, this will
be a recoverable fatal error, while PHP 7 will throw a TypeError exception.

To specify a type declaration, the type name should be added before the parameter name.
The declaration can be made to accept NULL values if the default value of the parameter is
set to NULL.

Valid types
Type Description Min. PHP version

Class /interface
name

The parameter must be an instanceof the given class or
interface name.

PHP 5.0.0

self The parameter must be an instanceof the same class as
the one the method is defined on. This can only be used
on class and instance methods.

PHP 5.0.0

array The parameter must be an array. PHP 5.1.0

callable The parameter must be a valid callable. PHP 5.4.0

bool The parameter must be a boolean value. PHP 7.0.0

float The parameter must be a floating point number. PHP 7.0.0

int The parameter must be an integer. PHP 7.0.0

string The parameter must be a string. PHP 7.0.0

Iterable The parameter must be either an array or
an instanceof Traversable.

PHP 7.1.0

Strict typing
By default, PHP will coerce values of the wrong type into the expected scalar type if possi-
ble. For example, a function that is given an integer for a parameter that expects a string will
get a variable of type string.

It is possible to enable strict mode on a per-file basis. In strict mode, only a variable of exact
type of the type declaration will be accepted, or a TypeError will be thrown. The only excep-
tion to this rule is that an integer may be given to a function expecting a float. Function calls
from within internal function s will not be affected by the strict_types declaration.

Type declarations
<?php
class Song{
 public $title;
 public $lyrics;

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

31 Prepared by: Prof. Hardik Chavda

}
class Data{
 function sing(Song $song){
 $this->d_song=$song;
 echo"Best song of the year :".$this->d_song->title."
";
 echo"<p>".$this->d_song->lyrics." </p>";
 }
}
$data=new Data();
$hit=new Song();
$hit->title="VandeMatartam";
$hit->lyrics="Sujalamsuphalammalayajasheetalam";
$data->sing($hit);

//sing($hit);
?>

OUTPUT
Best song of the year :VandeMatartam
Sujalamsuphalammalayajasheetalam

Late Static Bindings
Late static bindings tries to solve that limitation by introducing a keyword that references
the class that was initially called at runtime. It was decided not to introduce a new keyword
but rather use static that was already reserved.
Example # static:: simple usage

<?php
class Department{
 protected static $x=10;
 public function myFunction(){
 echo static::$x;
 }
}
class HR extends Department{
 protected static $x=20;
}
class Marketing extends Department{
 protected static $x=30;
}
$test=new Marketing;
$test->myFunction();
?>
The above example will output: 30

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

 Object Oriented Programming in PHP

32 Prepared by: Prof. Hardik Chavda

Objects and References

One of the key-points of PHP 5 OOP that is often mentioned is that "objects are passed by
references by default". This is not completely true. This section rectifies that general
thought using some examples.

A PHP reference is an alias, which allows two different variables to write to the same value.
As of PHP 5, an object variable doesn't contain the object itself as value anymore. It only
contains an object identifier which allows object assessors to find the actual object. When
an object is sent by argument, returned or assigned to another variable, the different varia-
bles are not aliases: they hold a copy of the identifier, which points to the same object.

<?php
class objRef{
 public $hi=5;
}
$a=new objRef();

$b=$a; // Copy.
//$b=&$a; // Reference.

echo "a=".$a->hi."
";
echo "b=".$b->hi."
";

echo "a=".$a->hi=3."
";
echo "b=".$b->hi=10."
";

$a=null;

echo "a=".$a->hi."
";
echo "b=".$b->hi."
";

?>

Output:
a=5
b=5
a=3
b=10

Notice: Trying to get property of non-object
a=
b=10

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Introduction

33 Prepared by: Prof. Hardik Chavda

BOOTSTRAP
What is Bootstrap?
Bootstrap is an Open Source product from Mark Otto and Jacob Thornton who, when ini-
tially released were both employees at Twitter. There was a need to standardize the front-
end toolsets of engineers across the company. In the launch blog post, Mark Otto introduc-
es the project like this:

In the earlier days of Twitter, engineers used almost any library they were familiar with to
meet front-end requirements. Inconsistencies among the individual applications made it dif-
ficult to scale and maintain them. Bootstrap began as an answer to these challenges and
quickly accelerated during Twitter’s first Hack week. By the end of Hackweek, we had
reached a stable version that engineers could use across the company.

— Mark Otto

https://dev.twitter.com/blog/
bootstrap-twitter

Since Bootstrap launched in August, 2011 it has taken off in popularity. It has evolved away
from being an entirely CSS driven project to include a host of JavaScript plugins, and icons
that go hand in hand with forms and buttons. At its base, it allows for responsive web de-
sign, and features a robust 12 column, 940px wide grid. One of the highlights is the build
tool on http://getbootstrap.com website where you can customize the build to suit your
needs, choosing what CSS and JavaScript features that you want to include on your site. All
of this, allows front-end web development to be catapulted forward, building on a stable
foundation of forward-looking design, and development. Getting started with Bootstrap is
as simple as dropping some CSS and JavaScript into the root of your site.

Starting a project new, Bootstrap comes with a handful of useful elements to get you start-
ed. Normally, when I start a project, I start with tools like Eric Meyer’s CSS reset, and get go-
ing on my web project. With Bootstrap, you just need to include the1bootstrap.css CSS file,
and optionally the bootstrap.js JavaScript file into your website and you are ready to go.

File Structure

The Bootstrap download includes three folders: css, js and img. For simplicity, add these to
the root of your project. Included are also minified versions of the CSS and JavaScript. Both
the uncompressed and the minified versions do not need to be included. For the sake of
brevity, I use the uncompressed during development, and then switch to the compressed
version in production.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Introduction

34 Prepared by: Prof. Hardik Chavda

Basic HTML Template
Normally, a web project looks something like this:

Basic HTML Layout.

<!DOCTYPE html>
<html>

<head>
<title>Bootstrap 101 Template</title>

</head>
<body>
 <h1>Hello, world!</h1>
</body>

</html>

With Bootstrap, we simply include the link to the CSS stylesheet, and the Javascript.

Basic Bootstrap Template.
<!DOCTYPE html>
<html>
 <head>

<title>Bootstrap 101 Template</title>
<link href="css/bootstrap.min.css" rel="stylesheet">

</head>
<body>

<h1>Hello, world!</h1>
<script src="js/bootstrap.min.js"></script>

</body>
</html>

Global Styles
With Bootstrap, a number of items come prebuilt. Instead of using the old reset block that
was part of the Bootstrap 1.0 tree, Bootstrap 2.0 uses Normalize.css, a project from Nicolas
Gallagher that is part of the HTML5 Boilerplate. This is included in the Boot‐ strap.css file.

In particular, these default styles give special treatment to typography and links.

• margin has been removed from the body, and content will snug up to the edges of
the browser window.

• background-color: white; is applied to the body
• Bootstrap is using the @baseFontFamily, @baseFontSize, and @baseLine Height

attributes as our typographic base. This allows the height of headings, and other
content around the site to maintain a similar line height.

• Bootstrap sets the global link color via @linkColor and applies link underlines only
on :hover

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Introduction

35 Prepared by: Prof. Hardik Chavda

Default Grid System
The default Bootstrap grid system utilizes 12 columns, making for a 940px wide container
without responsive features enabled. With the responsive CSS file added, the grid adapts to
be 724px and 1170px wide depending on your viewport. Below 767px view‐ ports, for ex‐
ample, on tablets and smaller devices the columns become fluid and stack vertically. At the
default width, each column is 60 pixels wide, offset 20 pixels to the left.

Basic Grid HTML
To create a simple layout, create a container with a div that has a class of .row, and add the
appropriate amount of .span* columns. Since we have 12-column grid, we just need to have
the amount of .span* columns add up to twelve. We could use a 3-6-3 layout,4-8, 3-5-4, 2-8-
2, we could go on and on, but I think you get the gist.
Basic Grid Layout.
<div class="row">
 <div class="span8">...</div>
 <div class="span4">...</div>
</div>

In the above example, we have .span8, and a .span4 adding up to 12

Offsetting Columns
You can move columns to the right using the .offset* class. Each class moves the span over
that width. So an .offset2 would move a .span7 over two columns.
Offsetting Columns.
<div class="row">
 <div class="span2">...</div>
 <div class="span7 offset2">...</div>
</div>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Introduction

36 Prepared by: Prof. Hardik Chavda

Nesting Columns
To nest your content with the default grid, inside of a .span*, simply add a new .row with
enough .span* that add up the number of spans of the parent container. So, let’s say that
you have a two columns layout, with a span8, and a span4, and you want to embed a two
column layout inside of the layout, what spans would you use? For a four column layout?

Create a table that looks like
this:

Your markup should look something like this:

Nesting Columns.
<div class="row">

<div class="span9">
 Level 1 column
<div class="row">

<div class="span6">Level 2</div>
<div class="span3">Level 2</div>

 </div>
</div>

</div>

Fluid Grid System
Fluid Grid System The fluid grid system uses percent instead of pixels for column widths. It
has the same responsive capabilities as our fixed grid system, ensuring proper proportions
for key screen resolutions and devices. You can make any row “fluid” by changing .row to
.rowfluid. The column classes stay the exact same, making it easy to flip between fixed and
fluid grids. To offset, you operate in the same way as the fixed grid system works by adding
.offset* to any column to shift by your desired number of columns.
Fluid Column Layout.
<div class="row-fluid">

<div class="span4">...</div>
<div class="span8">...</div>

</div>
<div class="row-fluid">

<div class="span4">...</div>
<div class="span4 offset2">...</div>

</div>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Introduction

37 Prepared by: Prof. Hardik Chavda

Nesting a fluid grid is a little different. Since we are using percentages, each .row resets the
column count to 12. For example, If you were inside a .span8, instead of two .span4 ele-
ments to divide the content in half, you would use two .span6 divs. This is the case for re-
sponsive content, as we want the content to fill 100% of the container.

Nesting Fluid Column Layout.
<div class="row-fluid">
 <div class="span8">

<div class="row">
<div class="span6">...</div>
<div class="span6">...</div>

</div>
</div>

</div>

Container Layouts
To add a fixed width, centered layout to your page, simply wrap the content in
<divclass="container">…</div>. If you would like to use a fluid layout, but want to wrap eve-
rything in a container, use the following: <div class="container-fluid">…</div>. Using a fluid
layout is great when you are building applications, administration screens and other related
projects.

Responsive Design
Responsive Design to turn on the responsive features of Bootstrap, you need to add a meta
tag to the of your webpage. If you haven’t downloaded the compiled source, you will also
need to add the responsive CSS file. An example of required files looks like this:

Responsive Meta Tag and CSS.
<!DOCTYPE html>
<html>
<head>

<title>My amazing Bootstrap site!</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link href="/css/bootstrap.css" rel="stylesheet">
<link href="/css/bootstrap-responsive.css" rel="stylesheet">

</head>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Introduction

38 Prepared by: Prof. Hardik Chavda

What Is Responsive Design?
Responsive design is a method for taking all of the existing content that is on the page, and
optimizing it for the device that is viewing it. For example, the desktop not only gets the
normal version of the website, but might get also get a widescreen layout, optimized for the
larger displays that many people have attached to their computers. Tab‐ lets get an opti‐
mized layout, taking advantage of the portrait or landscape layouts of those devices. And
then with phones, you can target the much narrower width of phones. To target these dif-
ferent widths, Bootstrap uses CSS media queries to measure the width of the browser view-
port, and then using conditionals, change which parts of the stylesheets are loaded. Using
the width of the browser viewport, Bootstrap can then optimize the content using a combi-
nation of ratios, widths, but mostly falls on minwidth and max-width properties.

At the core, Bootstrap supports five different layouts, each rely-
ing on CSS media queries. The largest layout has columns that
are 70 pixels wide, contrasting the 60 pixels of the normal lay-
out. The tablet layout brings the columns to 42 pixels wide, and
when narrower than that, each column goes fluid, meaning the
columns are stacked vertically and each column is the full width
of the device.

To add custom CSS based on the media query, you can either include all rules in one CSS file,
via the media queries below, or use entirely different CSS files. CSS media queries in the CSS
stylesheet.

/* Large desktop */
@media (min-width: 1200px) { ... }

/* Portrait tablet to landscape and desktop */
@media (min-width: 768px) and (max-width: 979px) { ... }

/* Landscape phone to portrait tablet */
@media (max-width: 767px) { ... }

/* Landscape phones and down */
@media (max-width: 480px) { ... }

For a larger site, you might want to separate them into separate files. In the HTML file,
youcan call them with the link tag in the head of your document. This is useful for keeping
file sizes smaller, but does potentially increase the HTTP requests if being responsive.

CSS media queries via the link tag in the HTML <head>.
<link rel="stylesheet" href="base.css" />
<link rel="stylesheet" media="(min-width:1200px)" href="large.css" />
<link rel="stylesheet" media="(min-width:768px) and (max-width: 979px)" href="tablet.css" />
<link rel="stylesheet" media="(max-width: 767px)" href="tablet.css" />
<link rel="stylesheet" media="(max-width: 480px)" href="phone.css" />

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

39 Prepared by: Prof. Hardik Chavda

Tables
One of my favorite parts of Bootstrap is the nice way that tables are handled. I do a lot of
work looking at and building tables, and the clean layout is great feature that’s included in
Bootstrap right off the bat. Bootstrap supports the following elements:

If you want a nice basic table style with just some light padding and horizontal dividers only,
add the base class of .table to any table. The basic layout has a top border on all of the <td>
elements.

Optional Table Classes
With the base table markup, and adding the .table class, there are few additional classes
that you can add to style the markup. There are three classes, .table-striped, .table-
bordered, .table-hover, and .table-condensed.

Striped Table
By adding the .table-striped class, you will get stripes on rows within the <tbody>.This is
done via the CSS:nth-child selector which is not available on Internet Explorer7-8.

Bordered Table
If you add the .table-bordered class, you will get borders surrounding every element, and
rounded corners around the entire table.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

40 Prepared by: Prof. Hardik Chavda

Hover Table
If you add the .table-hover class, when you hover over a row, a light grey background will be
added to rows while the user hovers over them.

Condensed Table
If you add the .table-condensed class, padding is cut in half on rows to condense the table.
Useful if you want denser information.

Table Row Classes
If you want to style the table rows, you could add the following classes to change the back-
ground color.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

41 Prepared by: Prof. Hardik Chavda

Forms
Another one of the highlights of using Bootstrap is the attention that is paid to forms. As a
web developer, one of my least favorite things to do is style forms. Bootstrap makes it easy
to do with the simple HTML markup and extended classes for different styles of forms.

The basic form structure comes styled in Bootstrap, without needing to add any extrahelper
classes. If you use the placeholder, it is only supported in newer browsers. Inolder ones, no
text will be displayed.

Basic Form Structure.
<form>

<fieldset>
<legend>Legend</legend>
<label for="name">Label name</label>
<input type="text" id="name" placeholder="Type something…">

Example block-level help text here.
<label class="checkbox" for="checkbox">

<input type="checkbox" id="checkbox">Check me out
</label>
<button type="submit" class="btn">Submit</button>

</fieldset>
</form>

Optional Form Layouts
With a few helper classes, you can dynamically update the layout of your form. Bootstrap
comes with a few preset styles you can use.

Search Form
Add .form-search to the form tag, and then .search-query to the <input> for an input box
with rounded corners, and an inline submit button.

Basic Form Structure.
<form class="form-search">

<input type="text" class="input-medium search-query">
<button type="submit" class="btn">Search</button>

</form>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

42 Prepared by: Prof. Hardik Chavda

Inline Form
To create a form where all of the elements are inline, and labels are along side, add the class
.form-inline to the form tag. To have the label and the input on the same line, use the hori-
zontal form below.

Inline Form Code.
<form class="form-inline">

<input type="text" class="input-small" placeholder="Email">
<input type="password" class="input-small" placeholder="Password">
<label class="checkbox">

<input type="checkbox"> Remember me
</label>
<button type="submit" class="btn">Sign in</button>

</form>

Horizontal Form
Bootstrap also comes with a pre-baked horizontal form; this one stands apart from the oth-
ers not only in the amount of markup, but also in the presentation of the form. Traditionally
you’d use a table to get a form layout like this, but Bootstrap manages to do it without. Even
better, if you’re using the responsive CSS, the horizontal form will automatically adapt to
smaller layouts by stacking the controls vertically.

To create a form that uses the horizontal layout, do the following:

• Add a class of form-horizontal to the parent <form> element
• Wrap labels and controls in a div with class control-group
• Add a class of control-label to the labels
• Wrap any associated controls in a div with class controls for proper alignment

Horizontal Form Code.
<form class="form-horizontal">
<div class="control-group">

<label class="control-label" for="inputEmail">Email</label>
<div class="controls">

<input type="text" id="inputEmail" placeholder="Email">

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

43 Prepared by: Prof. Hardik Chavda

</div>
</div>
<div class="control-group">

<label class="control-label" for="inputPassword">Password</label>
<div class="controls">

<input type="password" id="inputPassword" placeholder="Password">
</div>

</div>
<div class="control-group">
<div class="controls">

<label class="checkbox">
<input type="checkbox"> Remember me

</label>
<button type="submit" class="btn">Sign in</button>

</div>
</div>
</form>

Supported Form Controls
Bootstrap natively supports the most common form controls. Chief among them, input, text
area, checkbox and radio, and select.

Inputs
The most common form text field is the input—this is where users will enter most of the es-
sential form data. Bootstrap of-
fers support for all native HTML5
input types: text, password, date
time, date time-local, date,
month, time, week, number, email, url, search,tel and color.

Input Code.
<input type="text" placehold-
er="Text input">

Textarea
The textarea is used when you need multiple lines of in-
put. You’ll find you mainly modify the rows attribute,
changing it to the number of rows that you need to sup-
port(fewer rows = smaller box, more rows = bigger box).

Textarea Example.
<textarea rows="3"></textarea>,

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

44 Prepared by: Prof. Hardik Chavda

Checkboxes and radios
Checkboxes and radio buttons are great for when you want users to be able to choose from
a list of preset options. When building a form, use checkbox if you want the user to select
any number of options from a list, and radio if you want to limit them to just one selection.

Radio and Checkbox Code Example.

<label class="checkbox">
<input type="checkbox" value="">

Option one is this and that—be sure to include why it's great
</label>
<label class="radio">
<input type="radio" name="optionsRadios" id="optionsRadios1" value="option1" checked>

Option one is this and that—be sure to include why it's great
</label>
<label class="radio">
<input type="radio" name="optionsRadios" id="optionsRadios2" value="option2">

Option two can be something else and selecting it will deselect option one
</label>

If you want multiple checkboxes to appear on the same line together, simply add the

.inline class to a series of checkboxes or radios.
<label for="option1" class="checkbox inline">
<input id="option1" type="checkbox" id="inlineCheckbox1" value="option1"> 1
</label>
<label for="option2" class="checkbox inline">
<input id="option2" type="checkbox" id="inlineCheckbox2" value="option2"> 2
</label>
<label for="option3" class="checkbox inline">
<input id="option3" type="checkbox" id="inlineCheckbox3" value="option3"> 3
</label>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

45 Prepared by: Prof. Hardik Chavda

Selects

A select is used when you want to allow the user to pick from multiple options, but by de-
fault it only allows one. It’s best to use <select> for list options of which the user is familiar
such as states or numbers. Use multiple="multiple" to allow the user to select more than
one option. If you only want the user to choose one option, use type="radio".

Select Code Example.

<select>
<option>1</option>
<option>2</option>
<option>3</option>
<option>4</option>
<option>5</option>

</select>
<select multiple="multiple">

<option>1</option>
<option>2</option>
<option>3</option>
<option>4</option>
<option>5</option>

</select>

Extending Form Controls
In addition to the basic form controls listed in the previous section, Bootstrap offers few
other form components to complement the standard HTML form elements; for example, it
lets you easily prepend and append content to inputs.

Prepended and Appended Inputs
By adding prepended and appended content to an input field, you can add common ele-
ments to the text users input, like the dollar symbol, the @ for a Twitter username or any-
thing else that might be common for your application interface. To use, wrap the input in a
div with class input-prepend (to add the extra content before the user input)or input-
append (to add it after). Then, within that same <div>, place your extra content inside a
 with an add-on class, and place the either before or after the<input> ele-
ment.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

46 Prepared by: Prof. Hardik Chavda

Prepend and Append Code Example.
<div class="input-prepend">
@
<input class="span2" id="prependedInput" type="text" placeholder="Username">
</div>
<div class="input-append">
<input class="span2" id="appendedInput" type="text">
.00
</div>

If you combine both of them, you simply need to add both the .input-prependand .input-
append classes to the parent <div>.

Append and Prepend Code Example.

<div class="input-prepend input-append">
$
<input class="span2" id="appendedPrependedInput" type="text">
.00
</div>

Rather than using a , you can instead use <button> with a class of btn to at-
tach(surprise!) a button or two to the input.

Attach Multiple Buttons Code Example.

<div class="input-append">
<input class="span2" id="appendedInputButtons" type="text">
<button class="btn" type="button">Search</button>
<button class="btn" type="button">Options</button>
</div>

If you are appending a button to a search form, you will get the same nice rounded

corners that you would expect.

<form class="form-search">
<div class="input-append">
<input type="text" class="span2 search-query">
<button type="submit" class="btn">Search</button>
</div>
<div class="input-prepend">
<button type="submit" class="btn">Search</button>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

47 Prepared by: Prof. Hardik Chavda

<input type="text" class="span2 search-query">
</div>
</form>

Form Control Sizing
With the default grid system that is inherent in Bootstrap, you can use the .span* system for
sizing form controls. In addition to the span column-sizing method, you can also use a hand-
ful of classes that take a relative approach to sizing. If you want the input toact as a block
level element, you can add .input-block-level and it will be the full width of the container
element.

<input class="input-block-level" type="text" placeholder=".input-block-level">

Relative Input Controls

<input class="input-mini" type="text" placeholder=".input-mini">
<input class="input-small" type="text" placeholder=".input-small">
<input class="input-medium" type="text" placeholder=".input-medium">
<input class="input-large" type="text" placeholder=".input-large">
<input class="input-xlarge" type="text" placeholder=".input-xlarge">
<input class="input-xxlarge" type="text" placeholder=".input-xxlarge">

Grid Sizing
You can use any .span from .span1 to .span12 for form control sizing.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

48 Prepared by: Prof. Hardik Chavda

<input class="span1" type="text" placeholder=".span1">
<input class="span2" type="text" placeholder=".span2">
<input class="span3" type="text" placeholder=".span3">
<select class="span1">
...
</select>
<select class="span2">
...
</select>
<select class="span3">
...
</select>

If you want to use multiple inputs on a line, simply use the .controls-row modifier class to
apply the proper spacing. It floats the inputs to collapse the white space, and set the correct
margins, and like the .row class, it also clears the float.

<div class="controls">

<input class="span5" type="text" placeholder=".span5">
</div>
<div class="controls controls-row">

<input class="span4" type="text" placeholder=".span4">
<input class="span1" type="text" placeholder=".span1">

</div>

Uneditable Text
If you want to present a form control, but not have it editable, simple add the class
.uneditable-input.

Some value here

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

49 Prepared by: Prof. Hardik Chavda

Form Actions
At the bottom of a horizontal-form you can place the form actions. Then inputs will correctly
line up with the floated form controls.

<div class="form-actions">

<button type="submit" class="btn btn-primary">Save changes</button>
<button type="button" class="btn">Cancel</button>

</div>

Help Text
Bootstrap form controls can have either block or inline text that flows with the inputs.

<input type="text">Inline help text

<input type="text">
A longer block of help text that breaks onto a new line.

Form Control States
In addition to the: focus state, Bootstrap offers styling for disabled inputs, and classes for
form validation.

Input Focus
When an input receives: focus, that is to say, a user clicks into the input, or tabs intoit, the
outline of the input is removed, and a box-shadow is applied. I remember the first time that
I saw this on Twitter’s site, it blew me away, and I had to dig into the code to see how they
did it. In WebKit, this accomplished in the following manner:

input {
-webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
-webkit-transition: box-shadow linear 0.2s;
}
input:focus {
-webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 8px rgba(82, 168, 236, 0.6);
}

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

50 Prepared by: Prof. Hardik Chavda

The <input> has a small inset box-shadow, this gives the appearance that the input sits low-
er then the page. When :focus is applied, an 8px light blue code is applied. The webkit-
transition tells the browser to apply the effect in a linear manner over 0.2seconds. Nice and
subtle, a great effect.

<input class="input-xlarge" id="focusedInput" type="text" value="This is focused...">

Disabled Input
If you need to disable an input, simply add the disabled attribute to not only disable it,but
change the styling, and the mouse cursor when it hover over the element.

<input class="input-xlarge" id="disabledInput" type="text" placeholder="Disabled input here..." dis-
abled>

Validation States
Bootstrap includes validation styles for error, warning, info, and success messages. Touse,
simply add the appropriate class to the surrounding .control-group.

<div class="control-group warning">
<label class="control-label" for="inputWarning">Input with warning</label>
<div class="controls">
<input type="text" id="inputWarning">
Something may have gone wrong
</div>
</div>
<div class="control-group error">
<label class="control-label" for="inputError">Input with error</label>
<div class="controls">
<input type="text" id="inputError">
Please correct the error

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

51 Prepared by: Prof. Hardik Chavda

</div>
</div>
<div class="control-group success">
<label class="control-label" for="inputSuccess">Input with success</label>
<div class="controls">
<input type="text" id="inputSuccess">
Woohoo!
</div>
</div>

Buttons
One of my favorite features of Bootstrap is the way that buttons are styled. Dave Win-
ner,inventor of RSS, and big fan of Bootstrap has this to say about it:

That this is needed, desperately needed, is indicated by the incredible uptake of Bootstrap.I
use it in all the server software I’m working on. And it shows through in the templating-
language I’m developing, so everyone who uses it will find it’s “just there” and works, any‐
time you want to do a Bootstrap technique. Nothing to do, no libraries to include. It’s asif it
were part of the hardware. Same approach that Apple took with the Mac OS in 1984.

— Dave Winer
scripting.com

I like to think that Bootstrap is doing that, unifying the web, and allowing a unified experi-
ence of what an interface can look like across the web. With the advent of Bootstrap, you
can spot the sites that have taken it up usually first by the buttons that they use. A grid lay-
out, and many of the other features fade into the background, but buttons, forms and other
unifying elements are a key part of Bootstrap. Maybe I’m the only person that does this, but
when I come across a site that is using Bootstrap, I want to give a high five to whomever an-
swers the webmaster email at that domain, as they probably just get it. It reminds me of a
few years ago I would do the same thing when I would see contentin the HTML of sites that I
would visit.Now, buttons, and links can all look alike with Bootstrap, anything that is given
thatclass of btn will inherit the default look of a grey button with rounded corners.
Addingextra classes will add colors to the buttons.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

52 Prepared by: Prof. Hardik Chavda

Button Sizes
If you need larger or smaller buttons, simply add .btn-large, .btn-small, or .btn-mini to links
or buttons.

<p>
<button class="btn btn-large btn-primary" type="button">Large button</button>
<button class="btn btn-large" type="button">Large button</button>
</p>
<p>
<button class="btn btn-primary" type="button">Default button</button>
<button class="btn" type="button">Default button</button>
</p>
<p>
<button class="btn btn-small btn-primary" type="button">Small button</button>
<button class="btn btn-small" type="button">Small button</button>
</p>
<p>
<button class="btn btn-mini btn-primary" type="button">Mini button</button>
<button class="btn btn-mini" type="button">Mini button</button>
</p>

If you want to create buttons that display like a block level element, simply add the
btnblockclass. These buttons will display at 100% width.

<button class="btn btn-large btn-block btn-primary" type="button">Block level buton</button>
<button class="btn btn-large btn-block" type="button">Block level button</button>

Disabled Button Styling

For anchor elements, simply add the class of .disabled to the tag, and the link will drop back

in color, and will lose the gradient.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

53 Prepared by: Prof. Hardik Chavda

Primary link
Link

For a button, simply add the disabled attribute to the button. This will actually disablethe
button, so javascript is not directly needed.

<button type="button" class="btn btn-large btn-primary disabled" disabled="disabled">Primary but-
ton</button>
<button type="button" class="btn btn-large" disabled>Button</button>

Images
Images have three classes to apply some simple styles. They are .img-rounded that
addsborder-radius:6px to give the image rounded corners, .img-circle that adds makes the
entire image a circle by adding border-radius:500px making the image round, and lastly, ing-
polaroid, that adds a bit of padding and a grey border.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

54 Prepared by: Prof. Hardik Chavda

Icons
Bootstrap bundles 140 icons into one sprite that can be used with buttons, links, navigation,
and form fields. The icons are provided by Glyphicons.

Glyphicon Attribution
Users of Bootstrap are fortunate to use the Glyphicons free of use on Bootstrap projects.
The developers have asked that you use a link back to Glyphicons when practical.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

55 Prepared by: Prof. Hardik Chavda

Usage
To use the icons, simply use an <i> tag with the name spaced .icon- class. For example,if you
wanted to use the edit icon, you would simply add the .icon-edit class to the<i> tag.

<i class="icon-edit"></i>

If you want to use the white icon, simply add the .icon-white class to the tag.

<i class="icon-edit icon-white"></i>

Button Groups
Using button groups, combined with icons, you can create nice interface elements with min-
imal markup.

<div class="btn-toolbar">

<div class="btn-group">
<i class="icon-align-left"></i>
<i class="icon-align-center"></i>
<i class="icon-align-right"></i>
<i class="icon-align-justify"></i>

</div>
</div>

Pagination
Bootstrap handles pagination like a lot of interface elements, an unordered list, with wrap-
per <div> that has a specific class that identifies the element. In the basic form, adding
.pagination do the parent <div> creates a row of bordered links. Each of the list items can be
additionally styled by using the .disabled or .active class.

Basic Pagination Code Example.
<div class="pagination">

Prev
1
2
3
4
Next

</div>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

56 Prepared by: Prof. Hardik Chavda

Pagination with helper classes code examples.
<div class="pagination pagination-centered">

<li class="disabled">«
<li class="active">1
2
3
4
5
»

</div>

In addition to the .active and .disabled classes for list items, you can also add .pagination-
centered to the parent <div>. This will center the contents of the div. If you want the items
right aligned in the <div> add .pagination-right. For sizing, in addition to the normal size,
there are three other sizes, applied by adding a class to the wrapper <div>. They are:
.pagination-large, pagination-small and paginationmini.

Pagination Code Example
<div class="pagination pagination-large">

...

</div>
<div class="pagination">

...

</div>
<div class="pagination pagination-small">

...

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

57 Prepared by: Prof. Hardik Chavda

</div>
<div class="pagination pagination-mini">

...

</div>

Pager
If you need to create simple pagination links that go beyond text, the pager can work quite
well. Like the pagination links, the markup is an unordered list that sheds the wrapper <div>.
By default, the links are centered.

Basic Pager Code Example.
<ul class="pager">
Previous
Next

To left/right align the different links, you just need to add the .previous and .next class to
the list-items. Also, like .pagination above, you can add the disabled class for a muted look.

Aligned Page Links Code Example.
<ul class="pager">
<li class="previous">
li>
<li class="next">
Newer →

Labels

Labels and Badges are great for offering counts, tips, or other markup for pages. Another
one of my favorite little Bootstrap touches.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

58 Prepared by: Prof. Hardik Chavda

Label Markup.
Default
Success
Warning
Important
Info
Inverse

Badges
Badges are similar to labels, the primary difference is that they have more rounded corners.
The colors of badges reflect the same classes as labels.

Badges Code Example.
1
2
4
6
8
10

Typographic Elements
In addition to buttons, labels, forms, tables and tabs, Bootstrap has a few more elements for
basic page layout. The hero unit is a large, content area that increased the size of headings,
and adds a lot of margin for landing page content. To use, simply create a container <div>
with the class of .hero-unit. In addition to a larger <h1>, all the fontweight is reduced to 200.

Hero Unit Code Example.
<div class="hero-unit">
<h1>Heading</h1>
<p>Tagline</p>
<p>
Learn more
</p>
</div>

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

59 Prepared by: Prof. Hardik Chavda

Page Header
The page header is nice little feature to add appropriate spacing around the headings on a
page. This is particularly helpful on a blog archive page where you may have several post
titles, and need a way to add distinction to each of them. To use, wrap your heading in a
<div> with a class of .page-header.

Page Header Code Example.
<div class="page-header">
<h1>Example page header <small>Subtext for header</small></h1>
</div>

Thumbnails
A lot of sites need a way to layout images in a grid, and Bootstrap has an easy way to do
this. At the simplest, you add an <a> tag with the class of .thumbnail around an image. This
adds four pixels of padding, and a grey border. On hover, an animated glow is added around
the image.

Thumbnail Code Example

To add more content to the markup, as an
example, you could add headings, buttons
and more, swap the <a> tag that has a class
of .thumbnail to be a <div>. Inside of that
<div>, you can add anything you need.
Since this is a <div> we can use the default
span based naming convention for sizing. If
you want to group multiple images, place
them in an unordered list, and each list
item will be floated to left.

UNIT-1 Object Oriented Programming in PHP and Bootstrap Basics

Bootstrap Basics: Implementation

60 Prepared by: Prof. Hardik Chavda

Customizable Code Example.
<ul class="thumbnails">
<li class="span4">
<div class="thumbnail">

<div class="caption">
<h3>Meats</h3>
<p>Bacon ipsum dolor sit amet sirloin pancetta shoulder tongue doner, shank sausage.</p>
<p>Eat now!Later...</</div>
</div>

<li class="span4">
...

Alerts

Alerts provide a way to style messages to the user. The default alert is created by creating a
wrapper <div> and adding a class of .alert.

Basic Alert Code Example.
<div class="alert">
×
Warning! Not to be alarmist, but you have now been alerted.
</div>

The alert uses the alerts jquery plugin that is covered in chapter 4. To close the alert, you
can use a button that contains the data-dismiss="alert" attribute. Mobile Safari, and Mobile
Opera browsers require an href="#" to close.

If you have a longer message in your alert, you can use the .alert-block class. This provides a
little more padding above and below the content contained in the alert, particularly useful
for multi-page lines of content.

There are also three other color options, to help provide a more semantic method for the
alert. They are added by adding either .alert-error, .alert-success, or alertinfo.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller

61 Prepared by: Prof. Hardik Chavda

What is Laravel?
The need for frameworks
Of all the server-side programming languages, PHP undoubtedly has the lowest entry barri-
ers. It is almost always installed by default on even the cheapest web hosts, and it is also
extremely easy to set up on any personal computer. For newcomers who have some experi-
ence with authoring web pages in HTML and CSS, the concepts of variables, inline condi-
tions, and include statements are easy to grasp. PHP also provides many commonly used
functions that one might need when developing a dynamic website. All of this contributes to
what some refer to as the immediacy of PHP. However, this instant gratification comes at a
cost. It gives a false sense of productivity to beginners, who almost inevitably end up with
convoluted spaghetti code as they add more features and functionality to their site. This is
mainly because PHP, out of the box, does not do much to encourage the separation of con-
cerns.

The limitations of homemade tools
If you already have a few PHP projects under your belt, but have not used a web application
framework before, then you will probably have amassed a personal collection of commonly
used functions and classes that you can use on new projects. These homegrown utilities
might help you with common tasks, such as sanitizing data, authenticating users, and includ-
ing pages dynamically. You might also have a predefined directory structure where these
classes and the rest of your application code reside. However, all of this will exist in com-
plete isolation; you will be solely responsible for the maintenance, inclusion of new fea-
tures, and documentation. Fora lone developer or an agency with ever-changing staff, this
can be a tedious and time-consuming task, not to mention that if you were to collaborate
with other developers on the project, they would first have to get acquainted with the way
in which you build applications.

Laravel to the rescue
This is exactly where a web application framework such as Laravel comes to the rescue.
Laravel reuses and assembles existing components to provide you with a cohesive layer up-
on which you can build your web applications in a more structured and pragmatic way.
Drawing inspiration from popular frameworks written not just in PHP but other program-
ming languages too, Laravel offers a robust set of tools and an application architecture that
incorporates many of the best features of frameworks like CodeIgniter, Yii, ASP.NET MVC,
Ruby on Rails, Sinatra, and others. Most of these frameworks use the Model-View-
Controller (MVC) paradigm or design pattern. If you have used one of the aforementioned
tools or the MVC pattern, then you will find it quite easy to get started with Laravel 5.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller

62 Prepared by: Prof. Hardik Chavda

Features
So, what do you get out of the box with Laravel 5? Let's take a look and see how the follow-
ing features can help boost your productivity:

• Modularity: Laravel was built on top of over 20 different libraries and is itself split into in-
dividual modules. Tightly integrated with Composer dependency manager, these compo-
nents can be updated with ease.

• Testability: Built from the ground up to ease testing, Laravel ships with several helpers
that let you visit routes from your tests, crawl the resulting HTML, ensure that methods are
called on certain classes, and even impersonate authenticated users in order to make sure
the right code is run at the right time.

• Routing: Laravel gives you a lot of flexibility when you define the routes of your applica-
tion. For example, you could manually bind a simple anonymous function to a route with an
HTTP and HTTPS verb, such as GET, POST, PUT, or DELETE. This feature is inspired by micro-
frameworks, such as Sinatra(Ruby) and Silex (PHP).

• Configuration management: More often than not, your application will be running in dif-
ferent environments, which means that the database ore-mail server credential's settings or
the displaying of error messages will be different when your app is running on a local devel-
opment server to when it is running on a production server. Laravel has a consistent ap-
proach to handle configuration settings, and different settings can be applied indifferent
environments via the use of an .env file, containing settings unique for that environment.

•Query builder and ORM: Laravel ships with a fluent query builder, which lets you issue da-
tabase queries with a PHP syntax, where you simply chain methods instead of writing SQL.
In addition to this, it provides you with an Object Relational Mapper (ORM) and Active
Record implementation, called Eloquent, which is similar to what you will find in Ruby on
Rails, to help you define interconnected models. Both the query builder and the ORM are
compatible with different databases, such as PostgreSQL, SQLite, MySQL, and SQL Server.

• Schema builder, migrations, and seeding: Also inspired by Rails, these features allow you
to define your database schema in PHP code and keep track of any changes with the help of
database migrations. A migration is a simple way of describing a schema change and how to
revert to it. Seeding allows you to populate the selected tables of your database, for exam-
ple, after running a migration.

• Template engine: Partly inspired by the Razor template language in ASP.NET MVC, Laravel
ships with Blade, a lightweight template language with which you can create hierarchical
layouts with predefined blocks in which dynamic content is injected.

• E-mailing: With its Mail class, which wraps the popular SwiftMailerlibrary, Laravel makes
it very easy to send an e-mail, even with rich content and attachments from your applica-
tion. Laravel also comes with drivers for popular e-mail sending services such as SendGrid,
Mailgun, and Mandrill.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller

63 Prepared by: Prof. Hardik Chavda

• Authentication: Since user authentication is such a common feature in web applications,
out of the box Laravel comes with a default implementation to register, authenticate, and
even send password reminders to users.

• Redis: This is an in-memory key-value store that has a reputation for being extremely fast.
If you give Laravel a Redis instance that it can connect to, it can use it as a session and gen-
eral-purpose cache, and also give you the possibility to interact with it directly.

• Queues: Laravel integrates with several queue services, such as Amazon SQS, Beanstalkd,
and IronMQ, to allow you to delay resource-intensive tasks, such as the e-mailing of a large
number of users, and run them in the background, rather than keep the user waiting for the
task to complete.

• Event and command bus: Although not new in version 5, Laravel has brought a command
bus to the forefront in which it's easy to dispatch events(a class that represents something
that's happened in your application),handle commands (another class that represents some-
thing that should happen in your application), and act upon these at different points in your
application's lifecycle.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller

64 Prepared by: Prof. Hardik Chavda

MVC architecture

• Models: Models represent resources in your application. More often than not, they corre-
spond to records in a data store, most commonly a database table. In this respect, you can
think of models as representing entities in your application, be that a user, a news article, or
an event, among others. In Laravel, models are classes that usually extend Eloquent's base
Model class and are named in CamelCase (that is, News Article). This will correspond to a
database table with the same name, but in snake_case and plural (that is, news_articles). By
default, Eloquent also expects a primary key name did, and will also look for—and automat-
ically update—the created_at and updated_at columns. Models can also describe the rela-
tionships they have with other models. For example, a News Article model might be associ-
ated with a User model, as a User model might be able to author a News Article model.

• Controllers or routes: Controllers, at their simplest, take a request, do something, and
then send an appropriate response. Controllers are where the actual processing of data
goes, whether that is retrieving data from a database, or handling a form submission, and
saving data back to a database. Although you are not forced to adhere to any rules when it
comes to creating controller classes in Laravel, it does offer you two sane approaches: REST-
ful controllers and resource controllers. A RESTful controller allows you to define your own
actions and what HTTP methods they should respond to. Resource controllers are based
around an entity and allow you to perform common operations on that entity, based on the
HTTP method used.

• Views or Templates: Views are responsible for displaying the response returned from a
controller in a suitable format, usually as an HTML webpage. They can be conveniently built
by using the Blade template language or by simply using standard PHP. The file extension of
the view, either .blade.php or simply .php, determines whether or not Laravel treats your
view as a Blade template or not.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller

 Installation

65 Prepared by: Prof. Hardik Chavda

Basic requirements for Laravel

Version PHP (*) Release Bug Fixes Until Security Fixes Until

6 (LTS) 7.2 - 8.0 September 3rd, 2019 January 25th, 2022 September 6th, 2022

7 7.2 - 8.0 March 3rd, 2020 October 6th, 2020 March 3rd, 2021

8 7.3 - 8.1 September 8th, 2020 July 26th, 2022 January 24th, 2023

9 8.0 - 8.1 February 8th, 2022 August 8th, 2023 February 8th, 2024

10 8.1 February 7th, 2023 August 7th, 2024 February 7th, 2025

Using Laravel Installer

Laravel utilizes Composer to manage its dependencies. So, before using Laravel, make sure
you have Composer installed on your machine.

[composer global require "laravel/installer"]

Make sure to place the ~/.composer/vendor/bin directory (or the equivalent directory for
your OS) in your PATH so the laravel executable can be located by your system.

Once installed, the laravel new command will create a fresh Laravel installation in the direc-
tory you specify. For instance, laravel new blog will create a directory named blogcontaining
a fresh Laravel installation with all of Laravel's dependencies already installed. This method
of installation is much faster than installing via Composer:

[laravel new blog]

Using Composer

Strongly inspired by popular dependency managers in other languages, such as Ruby's Bun-
dler or Node.js's Node Package Manager (npm), Composer brings these features to PHP and
has quickly become the de-facto dependency manager in PHP.

How does Composer work?

A few years ago, you may have used PHP Extension and Application Repository(PEAR) to
download libraries. PEAR differs from Composer, in that PEAR would install packages on a
system-level basis, whereas a dependency manager, such as Composer, installs them on a
project-level basis. With PEAR, you could only have one version of a package installed on a
system. Composer allows you to use different versions of the same package in different ap-
plications, even if they reside on the same system.

http://getcomposer.org/

UNIT-2 Introduction to Laravel, Artisan, Route and Controller

 Installation

66 Prepared by: Prof. Hardik Chavda

Installation
Linux

Locally
To install Composer locally, run the installer in your project directory. The installer will check
a few PHP settings and then download composer.phar to your working directory. This file is
the Composer binary. It is a PHAR (PHP archive), which is an archive format for PHP which
can be run on the command line, amongst other things.

Now run php composer.phar in order to run Composer.

You can install Composer to a specific directory by using the --install-dir option and addi-
tionally (re)name it as well using the --filename option. When running the installer when fol-
lowing the Download page instructions add the following parameters:

php composer-setup.php --install-dir=bin --filename=composer

Now run php bin/composer in order to run Composer.

Globally
You can place the Composer PHAR anywhere you wish. If you put it in a directory that is part
of your PATH, you can access it globally. On UNIX systems you can even make it executable
and invoke it without directly using the php interpreter.
After running the installer following the Download page instructions you can run this to
move composer.phar to a directory that is in your path:

mv composer.phar /usr/local/bin/composer

If you like to install it only for your user and avoid requiring root permissions, you can
use ~/.local/bin instead which is available by default on some Linux distributions.

Windows
Using the Installer
This is the easiest way to get Composer set up on your machine. Download and
run Composer-Setup.exe. It will install the latest Composer version and set up your PATH so
that you can call composer from any directory in your command line.

Finding and installing new packages
Via Composer Create-Project

Alternatively, you may also install Laravel by issuing the Composer create-project command
in your terminal:

composer create-project --prefer-dist laravel/laravel blog "9.*"

https://getcomposer.org/download/
https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Configuration

67 Prepared by: Prof. Hardik Chavda

Introduction

All of the configuration files for the Laravel framework are stored in the config directory.
Each option is documented, so feel free to look through the files and get familiar with the
options available to you.

Environment configuration

It is often helpful to have different configuration values based on the environment the ap-
plication is running in. For example, you may wish to use a different cache driver locally than
you do on your production server. It's easy using environment-based configuration.

To make this a cinch, Laravel utilizes the DotEnv PHP library by Vance Lucas. In a fresh
Laravel installation, the root directory of your application will contain a .env.example file. If
you install Laravel via Composer, this file will automatically be renamed to .env. Otherwise,
you should rename the file manually.

All of the variables listed in this file will be loaded into the $_ENV PHP super-global when
your application receives a request. However, you may use the env helper to retrieve values
from these variables in your configuration files. In fact, if you review the Laravel configura-
tion files, you will notice several of the options already using this helper:

'debug' => env('APP_DEBUG', false),

The second value passed to the env function is the "default value". This value will be used if
no environment variable exists for the given key.

Your .env file should not be committed to your application's source control, since each de-
veloper / server using your application could require a different environment configuration.

If you are developing with a team, you may wish to continue including a .env.example file
with your application. By putting place-holder values in the example configuration file, other
developers on your team can clearly see which environment variables are needed to run
your application.

Protecting Sensitive Configuration

For "real" applications, it is advisable to keep all of your sensitive configuration out of your
configuration files. Things such as database passwords, Stripe API keys, and encryption keys
should be kept out of your configuration files whenever possible. So, where should we place
them? Thankfully, Laravel provides a very simple solution to protecting these types of con-
figuration items using "dot" files.

First, configure your application to recognize your machine as being in
the local environment. Next, create a .env.local.php file within the root of your project,

https://github.com/vlucas/phpdotenv
https://laravel.com/docs/4.2/configuration#environment-configuration

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Configuration

68 Prepared by: Prof. Hardik Chavda

which is usually the same directory that contains your composer.json file.
The .env.local.php should return an array of key-value pairs, much like a typical Laravel con-
figuration file:

<?php
return array(
 'TEST_STRIPE_KEY' => 'super-secret-sauce',
);
All of the key-value pairs returned by this file will automatically be available via
the $_ENV and $_SERVER PHP "superglobals". You may now reference these globals from
within your configuration files:

'key' => $_ENV['TEST_STRIPE_KEY']

Be sure to add the .env.local.php file to your .gitignore file. This will allow other developers
on your team to create their own local environment configuration, as well as hide your sen-
sitive configuration items from source control.

Now, on your production server, create a .env.php file in your project root that contains the
corresponding values for your production environment. Like the .env.local.php file, the pro-
duction .env.php file should never be included in source control.

Maintenance mode

When your application is in maintenance mode, a custom view will be displayed for all
routes into your application. This makes it easy to "disable" your application while it is up-
dating or when you are performing maintenance. A call to the App::down method is already
present in your app/start/global.php file. The response from this method will be sent to us-
ers when your application is in maintenance mode.

To enable maintenance mode, simply execute the down Artisan command:

php artisan down

To disable maintenance mode, use the up command:

php artisan up

To show a custom view when your application is in maintenance mode, you may add some-
thing like the following to your application's app/start/global.php file:

App::down(function()
{
 return Response::view('maintenance', array(), 503);
});

If the Closure passed to the down method returns NULL, maintenance mode will be
ignored for that request.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Configuration

69 Prepared by: Prof. Hardik Chavda

Database configuration
Almost every modern web application interacts with a database. Laravel makes interacting
with databases extremely simple across a variety of supported databases using raw SQL, a
fluent query builder, and the Eloquent ORM. Currently, Laravel provides first-party support
for five databases:

• MariaDB 10.3+

• MySQL 5.7+

• PostgreSQL 10.0+

• SQLite 3.8.8+

• SQL Server 2017+

Configuration

The configuration for Laravel's database services is located in your application's con-
fig/database.php configuration file. In this file, you may define all of your database connec-
tions, as well as specify which connection should be used by default. Most of the configura-
tion options within this file are driven by the values of your application's environment varia-
bles. Examples for most of Laravel's supported database systems are provided in this file.

SQL Server Configuration
Laravel supports SQL Server out of the box; however, you will need to add the connection
configuration for the database:

'sqlsrv' => [
 'driver' => 'sqlsrv',
 'host' => env('DB_HOST', 'localhost'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 'charset' => 'utf8',
 'prefix' => '',
],

Configuration Using URLs
Typically, database connections are configured using multiple configuration values such as
host, database, username, password, etc. Each of these configuration values has its own
corresponding environment variable. This means that when configuring your database con-
nection information on a production server, you need to manage several environment vari-
ables.

Some managed database providers such as AWS and Heroku provide a single database
"URL" that contains all of the connection information for the database in a single string. An
example database URL may look something like the following:

mysql://root:password@127.0.0.1/forge?charset=UTF-8

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Configuration

70 Prepared by: Prof. Hardik Chavda

These URLs typically follow a standard schema convention:

driver://username:password@host:port/database?options

For convenience, Laravel supports these URLs as an alternative to configuring your database
with multiple configuration options. If the url (or corresponding DATABASE_URL environ-
ment variable) configuration option is present, it will be used to extract the database con-
nection and credential information.

Read / Write Connections
Sometimes you may wish to use one database connection for SELECT statements, and an-
other for INSERT, UPDATE, and DELETE statements. Laravel makes this a breeze, and the
proper connections will always be used whether you are using raw queries, the query build-
er, or the Eloquent ORM.

To see how read / write connections should be configured, let's look at this example:

'mysql' => [
 'read' => [
 'host' => [
 '192.168.1.1',
 '196.168.1.2',
],
],
 'write' => [
 'host' => [
 '196.168.1.3',
],
],
 'sticky' => true,
 'driver' => 'mysql',
 'database' => 'database',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8mb4',
 'collation' => 'utf8mb4_unicode_ci',
 'prefix' => '',
],

Note that two keys have been added to the configuration array: read and write. Both

of these keys have array values containing a single key: host. The rest of the database op-
tions for the read and write connections will be merged from the main mysql array.

So, we only need to place items in the read and write arrays if we wish to override

the values in the main array. So, in this case, 192.168.1.1 will be used as the "read" connec-
tion, while 192.168.1.2 will be used as the "write" connection. The database credentials,
prefix, character set, and all other options in the main mysql array will be shared across
both connections.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Project Structure

71 Prepared by: Prof. Hardik Chavda

Introduction

The default Laravel application structure is intended to provide a great starting point for
both large and small applications. Of course, you are free to organize your application how-
ever you like. Laravel imposes almost no restrictions on where any given class is located - as
long as Composer can autoload the class.

The Root Directory
The root directory of a fresh Laravel installation contains a variety of directories:

The app directory, as you might expect, contains the core code of your application. We'll
explore this directory in more detail soon.

The bootstrap directory contains a few files that bootstrap the framework and configure
autoloading, as well as a cache directory that contains a few framework generated files for
bootstrap performance optimization.

The config directory, as the name implies, contains all of your application's configuration
files.

The database directory contains your database migration and seeds. If you wish, you may
also use this directory to hold an SQLite database.

The public directory contains the front controller and your assets (images, JavaScript, CSS,
etc.).

The resources directory contains your views, raw assets (LESS, SASS, CoffeeScript), and lo-
calization files.

The storage directory contains compiled Blade templates, file based sessions, file caches,
and other files generated by the framework. This directory is segregated into app, frame-
work, and logs directories. The app directory may be used to store any files utilized by your
application. The framework directory is used to store framework generated files and caches.
Finally, the logs directory contains your application's log files.

The tests directory contains your automated tests. An example PHPUnit is provided out of
the box.

The vendor directory contains your Composer dependencies.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Project Structure

72 Prepared by: Prof. Hardik Chavda

The App Directory

The "meat" of your application lives in the app directory. By default, this directory is
namespaced under App and is autoloaded by Composer using the PSR-4 autoloading stand-
ard.

The app directory ships with a variety of additional directories such as Console, Http, and
Providers. Think of the Console and Http directories as providing an API into the "core" of
your application. The HTTP protocol and CLI are both mechanisms to interact with your ap-
plication, but do not actually contain application logic. In other words, they are simply two
ways of issuing commands to your application. The Console directory contains all of your
Artisan commands, while the Http directory contains your controllers, middleware, and re-
quests.

The Events directory, as you might expect, houses event classes. Events may be used to
alert other parts of your application that a given action has occurred, providing a great deal
of flexibility and decoupling.

The Exceptions directory contains your application's exception handler and is also a good
place to stick any exceptions thrown by your application.

The Jobs directory, of course, houses the queueable jobs for your application. Jobs may be
queued by your application or run synchronously within the current request lifecycle.

The Listeners directory contains the handler classes for your events. Handlers receive an
event and perform logic in response to the event being fired. For example, a UserRegistered
event might be handled by a SendWelcomeEmail listener.

The Policies directory contains the authorization policy classes for your application. Policies
are used to determine if a user can perform a given action against a resource. For more in-
formation check out the authorization documentation.

Note: Many of the classes in the app directory can be generated by Artisan via commands.
To review the available commands, run the php artisan list make command in your terminal.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Artisan Console

73 Prepared by: Prof. Hardik Chavda

Artisan Command Line Tool
Introduction

Artisan is the name of the command-line interface included with Laravel. It provides
a number of helpful commands for your use while developing your application. It is driven
by the powerful Symfony Console component.

Usage
Listing All Available Commands
To view a list of all available Artisan commands, you may use the list command:

php artisan list

Viewing The Help Screen For A Command
Every command also includes a "help" screen which displays and describes the command's
available arguments and options. To view a help screen, simply precede the name of the
command with help:

php artisan help migrate

Writing Commands
In addition to the commands provided with Artisan, you may also build your own custom
commands for working with your application. You may store your custom commands in the
app/Console/Commands directory; however, you are free to choose your own storage loca-
tion as long as your commands can be autoloaded based on your composer.json settings.
To create a new command, you may use the make:console Artisan command, which will
generate a command stub to help you get started:

php artisan make:console SendEmails

The command above would generate a class at app/Console/Commands/SendEmails.php.
When creating the command, the --command option may be used to assign the terminal
command name:

php artisan make:console SendEmails --command=emails:send

Command Structure
Once your command is generated, you should fill out the signature and description proper-
ties of the class, which will be used when displaying your command on the list screen.

The handle method will be called when your command is executed. You may place any
command logic in this method. Let's take a look at an example command.

Note that we are able to inject any dependencies we need into the command's constructor.
The Laravel service container will automatically inject all dependencies type-hinted in the
constructor. For greater code reusability, it is good practice to keep your console commands
light and let them defer to application services to accomplish their tasks.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Artisan Console

74 Prepared by: Prof. Hardik Chavda

<?php
namespace App\Console\Commands;
use App\User;
use App\DripEmailer;
use Illuminate\Console\Command;

class SendEmails extends Command
{
 protected $signature = 'email:send {user}';

 protected $description = 'Send drip e-mails to a user';

 protected $drip;

 public function __construct(DripEmailer $drip)
 {
 parent::__construct();

 $this->drip = $drip;
 }

 public function handle()
 {
 $this->drip->send(User::find($this->argument('user')));
 }
}

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Routing in Laravel

75 Prepared by: Prof. Hardik Chavda

Types of Route Files

All Laravel routes are defined in your route files, which are located in the routes directory.
These files are automatically loaded by your application's
App\Providers\RouteServiceProvider. The routes/web.php file defines routes that are for
your web interface. These routes are assigned the web middleware group, which provides
features like session state and CSRF protection. The routes in routes/api.php are stateless
and are assigned the api middleware group.

For most applications, you will begin by defining routes in your routes/web.php file. The
routes defined in routes/web.php may be accessed by entering the defined route's URL in
your browser. For example, you may access the following route by navigating to
http://example.com/user in your browser:

use App\Http\Controllers\UserController;

Route::get('/user', [UserController::class, 'index']);

Routes defined in the routes/api.php file are nested within a route group by the RouteServ-
iceProvider. Within this group, the /api URI prefix is automatically applied so you do not
need to manually apply it to every route in the file. You may modify the prefix and other
route group options by modifying your RouteServiceProvider class.

Basic Routing
The most basic Laravel routes accept a URI and a closure, providing a very simple and ex-
pressive method of defining routes and behavior without complicated routing configuration
files:

use Illuminate\Support\Facades\Route;

Route::get('/greeting', function () {
 return 'Hello World';
});

Route Parameters
Required Parameters
Sometimes you will need to capture segments of the URI within your route. For example,
you may need to capture a user's ID from the URL. You may do so by defining route parame-
ters:

Route::get('/user/{id}', function ($id) {
 return 'User '.$id;
});

You may define as many route parameters as required by your route:

Route::get('/posts/{post}/comments/{comment}', function ($postId, $commentId) {
 //
});

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Routing in Laravel

76 Prepared by: Prof. Hardik Chavda

Route parameters are always encased within {} braces and should consist of alphabetic
characters. Underscores (_) are also acceptable within route parameter names. Route pa-
rameters are injected into route callbacks / controllers based on their order - the names of
the route callback / controller arguments do not matter.

Parameters & Dependency Injection

If your route has dependencies that you would like the Laravel service container to
automatically inject into your route's callback, you should list your route parameters after
your dependencies:

use Illuminate\Http\Request;

Route::get('/user/{id}', function (Request $request, $id) {
 return 'User '.$id;
});

Named Routes
Named routes allow the convenient generation of URLs or redirects for specific routes. You
may specify a name for a route by chaining the name method onto the route definition:

Route::get('/user/profile', function () {
 //
})->name('profile');

You may also specify route names for controller actions:

Route::get(
 '/user/profile',
 [UserProfileController::class, 'show']
)->name('profile');

Note : Route names should always be unique.

Generating URLs To Named Routes
Once you have assigned a name to a given route, you may use the route's name when gen-
erating URLs or redirects via Laravel's route and redirect helper functions:

// Generating URLs...

$url = route('profile');

// Generating Redirects...

return redirect()->route('profile');

return to_route('profile');

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Routing in Laravel

77 Prepared by: Prof. Hardik Chavda

If the named route defines parameters, you may pass the parameters as the second argu-
ment to the route function. The given parameters will automatically be inserted into the
generated URL in their correct positions:

Route::get('/user/{id}/profile', function ($id) {
 //
})->name('profile');

$url = route('profile', ['id' => 1]);

If you pass additional parameters in the array, those key / value pairs will automatically be
added to the generated URL's query string:

Route::get('/user/{id}/profile', function ($id) {
 //
})->name('profile');

$url = route('profile', ['id' => 1, 'photos' => 'yes']);

// /user/1/profile?photos=yes

Route Groups
Route groups allow you to share route attributes, such as middleware, across a large num-
ber of routes without needing to define those attributes on each individual route.

Nested groups attempt to intelligently "merge" attributes with their parent group. Middle-
ware and where conditions are merged while names and prefixes are appended.
Namespace delimiters and slashes in URI prefixes are automatically added where appropri-
ate.

Middleware
To assign middleware to all routes within a group, you may use the middleware method be-
fore defining the group. Middleware are executed in the order they are listed in the array:

Route::middleware(['first', 'second'])->group(function () {
 Route::get('/', function () {
 // Uses first & second middleware...
 });

 Route::get('/user/profile', function () {
 // Uses first & second middleware...
 });
});

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Routing in Laravel

78 Prepared by: Prof. Hardik Chavda

Controllers
If a group of routes all utilize the same controller, you may use the controller method to de-
fine the common controller for all of the routes within the group. Then, when defining the
routes, you only need to provide the controller method that they invoke:

use App\Http\Controllers\OrderController;

Route::controller(OrderController::class)->group(function () {
 Route::get('/orders/{id}', 'show');
 Route::post('/orders', 'store');
});

Route Model Binding
When injecting a model ID to a route or controller action, you will often query the database
to retrieve the model that corresponds to that ID. Laravel route model binding provides a
convenient way to automatically inject the model instances directly into your routes. For
example, instead of injecting a user's ID, you can inject the entire User model instance that
matches the given ID.

Implicit Binding
Laravel automatically resolves Eloquent models defined in routes or controller actions
whose type-hinted variable names match a route segment name. For example:

use App\Models\User;

Route::get('/users/{user}', function (User $user) {
 return $user->email;
});

Since the $user variable is type-hinted as the App\Models\User Eloquent model and the var-
iable name matches the {user} URI segment, Laravel will automatically inject the model in-
stance that has an ID matching the corresponding value from the request URI. If a matching
model instance is not found in the database, a 404 HTTP response will automatically be
generated.

Of course, implicit binding is also possible when using controller methods. Again, note the
{user} URI segment matches the $user variable in the controller which contains an
App\Models\User type-hint:
use App\Http\Controllers\UserController;
use App\Models\User;

// Route definition...
Route::get('/users/{user}', [UserController::class, 'show']);

// Controller method definition...
public function show(User $user)
{
 return view('user.profile', ['user' => $user]);
}

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Routing in Laravel

79 Prepared by: Prof. Hardik Chavda

Rate Limiting
Defining Rate Limiters
Laravel includes powerful and customizable rate limiting services that you may utilize to re-
strict the amount of traffic for a given route or group of routes. To get started, you should
define rate limiter configurations that meet your application's needs. Typically, this should
be done within the configure RateLimiting method of your application's
App\Providers\RouteServiceProvider class.

Rate limiters are defined using the RateLimiter facade's for method. The for method accepts
a rate limiter name and a closure that returns the limit configuration that should apply to
routes that are assigned to the rate limiter. Limit configuration are instances of the Illumi-
nate\Cache\RateLimiting\Limit class. This class contains helpful "builder" methods so that
you can quickly define your limit. The rate limiter name may be any string you wish:

use Illuminate\Cache\RateLimiting\Limit;
use Illuminate\Http\Request;
use Illuminate\Support\Facades\RateLimiter;

/**
 * Configure the rate limiters for the application.
 *
 * @return void
 */
protected function configureRateLimiting()
{
 RateLimiter::for('global', function (Request $request) {
 return Limit::perMinute(1000);
 });
}

If the incoming request exceeds the specified rate limit, a response with a 429 HTTP status
code will automatically be returned by Laravel. If you would like to define your own re-
sponse that should be returned by a rate limit, you may use the response method:
RateLimiter::for('global', function (Request $request) {
 return Limit::perMinute(1000)->response(function (Request $request, array $headers) {
 return response('Custom response...', 429, $headers);
 });
});

Since rate limiter callbacks receive the incoming HTTP request instance, you may build the
appropriate rate limit dynamically based on the incoming request or authenticated user:

RateLimiter::for('uploads', function (Request $request) {
 return $request->user()->vipCustomer()
 ? Limit::none()
 : Limit::perMinute(100);
});

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Routing in Laravel

80 Prepared by: Prof. Hardik Chavda

Accessing the current route
You may use the current, currentRouteName, and currentRouteAction methods on the
Route facade to access information about the route handling the incoming request:

use Illuminate\Support\Facades\Route;

$route = Route::current(); // Illuminate\Routing\Route
$name = Route::currentRouteName(); // string
$action = Route::currentRouteAction(); // string

You may refer to the API documentation for both the underlying class of the Route facade
and Route instance to review all of the methods that are available on the router and route
classes.

Routing Controllers
Routing controllers allow you to create the controller classes with methods used to handle
the requests.

Now, we will understand the routing controllers through an example.
Step 1: First, we need to create a controller. We already created the controller named as
'PostController' in the previous topic.

Step 2: Open the web.php file and write the following code:
Route::get('/post','PostController@index');
In the above code, '/post' is the URL that we want to access, and PostController is the name
of the controller. The 'index' is the name of the method available in
the PostController.php file, and @index indicates that the index() method should be hit
when we access the '/post' url.

Step 3: Add the code which is shown below as highlighted:

<?php

namespace App\Http\Controllers;
use Illuminate\Http\Request;

class PostController extends Controller {
public function index() {
 return "Hello Geetanjali";}
}
public function create() {
 //
}
public function store(Request $request) {
 //
 }
 public function show($id) {
 //
}

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Routing in Laravel

81 Prepared by: Prof. Hardik Chavda

public function edit($id) {
 //
 }

public function update(Request $request, $id) {
 //
}

 public function destroy($id) {
 //
 }
}

Step 4: Enter the URL in the browser, i.e., localhost/laravelproject/public/host, then the
output would be shown as below:

Till now, we have observed how we can access the Controller. Now, we will see that how to
pass the data to the Controller class.

Passing data to the Controller

Let's understand through an example of how we can pass the data to the Controller:

Step 1: Open the web.php file and add the following code:

Route::get('/post/{id}','PostController@index');

The above code contains the 'id' parameter in the '/post' url.

Step 2: Edit the PostController.php file.
public function index($id)
{
 return "ID is :". $id;
}

In the above case, we have updated the index() method. We have passed the 'id' parameter
in the index() method.

Step 3: Enter the URL 'localhost/laravelproject/post/100' into the web browser,

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Routing in Laravel

82 Prepared by: Prof. Hardik Chavda

Controllers and Namespaces

When we specify the controller class in Route::get() method, then we do not need to specify
the full controller namespace. As RouteServiceProvider loads all the route files that contain
the namespace, we just need to specify the class name that comes after
the App/Http/Controllers portion of the namespace.

If the full controller class is App/Http/Controllers/Post/PostController, then we can register
the routes of the Controller as given below:

Route::get('\post','Post\PostController@index');

Single Action Controllers

If we want to use the single method in a controller, then we can use the single
__invoke() method on the controller.

When we create the controller by using the command php artisan:make controller PostCon-
troller then the structure of the PostController file would be:
namespace App\Http\Controllers;
use Illuminate\Http\Request;

class PostController extends Controller
{
 //
}

Now, we add the code of __invoke() function in a PostController class:
<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;
class PostController extends Controller
{
 //
 public function __invoke($id)
{
 return "id is : ". $id;
}
}

In the end, we add the code in the web.php file, which is responsible for handling the ac-
tions.

1. route::get('/post/{id}','PostController');

The above code hits the __invoke() method of a PostController class. This concludes that we
do not need to write the @invoke method for accessing the single action controllers.

If no action is specified, i.e., we forget to write the __invoke() method, then
the UnexpectedValueExpression is thrown.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Controllers

83 Prepared by: Prof. Hardik Chavda

Introduction
Instead of defining all of your request handling logic as closures in your route files, you may
wish to organize this behavior using "controller" classes. Controllers can group related re-
quest handling logic into a single class. For example, a UserController class might handle all
incoming requests related to users, including showing, creating, updating, and deleting us-
ers. By default, controllers are stored in the app/Http/Controllers directory.

Basic Controllers
Let's take a look at an example of a basic controller. Note that the controller extends the
base controller class included with Laravel: App\Http\Controllers\Controller:

<?php

namespace App\Http\Controllers;

use App\Models\User;

class UserController extends Controller
{
 /**
 * Show the profile for a given user.
 *
 * @param int $id
 * @return \Illuminate\View\View
 */
 public function show($id)
 {
 return view('user.profile', [
 'user' => User::findOrFail($id)
]);
 }
}

You can define a route to this controller method like so:

use App\Http\Controllers\UserController;

Route::get('/user/{id}', [UserController::class, 'show']);

When an incoming request matches the specified route URI, the show method on the
App\Http\Controllers\UserController class will be invoked and the route parameters will be
passed to the method.

Controllers are not required to extend a base class. However, you will not have access to
convenient features such as the middleware and authorize methods.

UNIT-2 Introduction to Laravel, Artisan, Route and Controller
 Controllers

84 Prepared by: Prof. Hardik Chavda

Controller Middleware

Middleware may be assigned to the controller's routes in your route files:

Route::get('profile', [UserController::class, 'show'])->middleware('auth');

Or, you may find it convenient to specify middleware within your controller's constructor.
Using the middleware method within your controller's constructor, you can assign middle-
ware to the controller's actions:

class UserController extends Controller
{
 /**
 * Instantiate a new controller instance.
 *
 * @return void
 */
 public function __construct()
 {
 $this->middleware('auth');
 $this->middleware('log')->only('index');
 $this->middleware('subscribed')->except('store');
 }
}

Controllers also allow you to register middleware using a closure. This provides a convenient
way to define an inline middleware for a single controller without defining an entire mid-
dleware class:

$this->middleware(function ($request, $next) {
 return $next($request);
});

UNIT-3 Blade Template, Form and Validation
 Blade Template

85 Prepared by: Prof. Hardik Chavda

Introduction
Blade is the simple, yet powerful templating engine that is included with Laravel. Unlike
some PHP templating engines, Blade does not restrict you from using plain PHP code in your
templates. In fact, all Blade templates are compiled into plain PHP code and cached until
they are modified, meaning Blade adds essentially zero overhead to your application. Blade
template files use the .blade.php file extension and are typically stored in the re-
sources/views directory.

Blade views may be returned from routes or controllers using the global view helper. Of
course, as mentioned in the documentation on views, data may be passed to the Blade view
using the view helper's second argument:

Route::get('/', function () {
 return view('greeting', ['name' => 'Finn']);
});

Displaying Data

You may display data that is passed to your Blade views by wrapping the variable in curly
braces. For example, given the following route:

Route::get('/', function () {
 return view('welcome', ['name' => 'Samantha']);
});

You may display the contents of the name variable like so:

Hello, {{ $name }}.

Blade's {{ }} echo statements are automatically sent through PHP's htmlspecialchars func-
tion to prevent XSS attacks.

You are not limited to displaying the contents of the variables passed to the view. You may
also echo the results of any PHP function. In fact, you can put any PHP code you wish inside
of a Blade echo statement:
The current UNIX timestamp is {{ time() }}.

Components
Components and slots provide similar benefits to sections, layouts, and includes; however,
some may find the mental model of components and slots easier to understand. There are
two approaches to writing components: class based components and anonymous compo-
nents.

To create a class based component, you may use the make:component Artisan command.
To illustrate how to use components, we will create a simple Alert component. The
make:component command will place the component in the app/View/Components direc-
tory:
php artisan make:component Alert

UNIT-3 Blade Template, Form and Validation
 Blade Template

86 Prepared by: Prof. Hardik Chavda

The make:component command will also create a view template for the component. The
view will be placed in the resources/views/components directory. When writing compo-
nents for your own application, components are automatically discovered within the
app/View/Components directory and resources/views/components directory, so no further
component registration is typically required.

Slots
You will often need to pass additional content to your component via "slots". Component
slots are rendered by echoing the $slot variable. To explore this concept, let's imagine that
an alert component has the following markup:

<!-- /resources/views/components/alert.blade.php -->

<div class="alert alert-danger">
 {{ $slot }}
</div>

We may pass content to the slot by injecting content into the component:

<x-alert>
 Whoops! Something went wrong!
</x-alert>

Sometimes a component may need to render multiple different slots in different locations
within the component. Let's modify our alert component to allow for the injection of a "ti-
tle" slot:

<!-- /resources/views/components/alert.blade.php -->

{{ $title }}

<div class="alert alert-danger">
 {{ $slot }}
</div>

You may define the content of the named slot using the x-slot tag. Any content not within
an explicit x-slot tag will be passed to the component in the $slot variable:

<x-alert>
 <x-slot:title>
 Server Error
 </x-slot>

 Whoops! Something went wrong!
</x-alert>

UNIT-3 Blade Template, Form and Validation
 Blade Template

87 Prepared by: Prof. Hardik Chavda

Control Structures

In addition to template inheritance and displaying data, Blade also provides convenient
short-cuts for common PHP control structures, such as conditional statements and loops.
These short-cuts provide a very clean, terse way of working with PHP control structures,
while also remaining familiar to their PHP counterparts.

If Statements
You may construct if statements using the @if, @elseif, @else, and @endif directives. These
directives function identically to their PHP counterparts:

@if (count($records) === 1)
 I have one record!
@elseif (count($records) > 1)
 I have multiple records!
@else
 I don't have any records!
@endif

For convenience, Blade also provides an @unless directive:

@unless (Auth::check())
 You are not signed in.
@endunless

You may also determine if a given layout section has any content using the @hasSection di-
rective:

<title>
 @hasSection ('title')
 @yield('title') - App Name
 @else
 App Name
 @endif
</title>

Loops
In addition to conditional statements, Blade provides simple directives for working with
PHP's supported loop structures. Again, each of these directives functions identically to their
PHP counterparts:

@for ($i = 0; $i < 10; $i++)
 The current value is {{ $i }}
@endfor

UNIT-3 Blade Template, Form and Validation
 Blade Template

88 Prepared by: Prof. Hardik Chavda

@foreach ($users as $user)
 <p>This is user {{ $user->id }}</p>
@endforeach

@forelse ($users as $user)
 {{ $user->name }}
@empty
 <p>No users</p>
@endforelse

@while (true)
 <p>I'm looping forever.</p>
@endwhile

When using loops you might need to end the loop or skip the current iteration:

@foreach ($users as $user)
 @if ($user->type == 1)
 @continue
 @endif

 {{ $user->name }}

 @if ($user->number == 5)
 @break
 @endif
@endforeach

You may also include the condition with the directive declaration in one line:

@foreach ($users as $user)
 @continue($user->type == 1)

 {{ $user->name }}

 @break($user->number == 5)
@endforeach

Including Sub-Views
Blade's @include directive, allows you to easily include a Blade view from within an existing
view. All variables that are available to the parent view will be made available to the includ-
ed view:

<div>
 @include('shared.errors')

 <form>
 <!-- Form Contents -->
 </form>
</div>

UNIT-3 Blade Template, Form and Validation
 Blade Template

89 Prepared by: Prof. Hardik Chavda

Even though the included view will inherit all data available in the parent view, you may also
pass an array of extra data to the included view:

@include('view.name', ['some' => 'data'])

Note: You should avoid using the __DIR__ and __FILE__ constants in your Blade views, since
they will refer to the location of the cached view.

Rendering Views For Collections
You may combine loops and includes into one line with Blade's @each directive:

@each('view.name', $jobs, 'job')

The first argument is the view partial to render for each element in the array or collection.
The second argument is the array or collection you wish to iterate over, while the third ar-
gument is the variable name that will be assigned to the current iteration within the view.
So, for example, if you are iterating over an array of jobs, typically you will want to access
each job as a job variable within your view partial. The key for the current iteration will be
available as the key variable within your view partial.

You may also pass a fourth argument to the @each directive. This argument determines the
view that will be rendered if the given array is empty.

@each('view.name', $jobs, 'job', 'view.empty')

Comments
Blade also allows you to define comments in your views. However, unlike HTML comments,
Blade comments are not included in the HTML returned by your application:

{{-- This comment will not be present in the rendered HTML --}}

Defining A Layout
Two of the primary benefits of using Blade are template inheritance and sections. To get
started, let's take a look at a simple example. First, we will examine a "master" page layout.
Since most web applications maintain the same general layout across various pages, it's
convenient to define this layout as a single Blade view:

<!-- Stored in resources/views/layouts/master.blade.php -->

<html>
 <head>
 <title>App Name - @yield('title')</title>
 </head>
 <body>
 @section('sidebar')
 This is the master sidebar.
 @show

UNIT-3 Blade Template, Form and Validation
 Blade Template

90 Prepared by: Prof. Hardik Chavda

 <div class="container">
 @yield('content')
 </div>
 </body>
</html>

As you can see, this file contains typical HTML mark-up. However, take note of the @section
and @yield directives. The @section directive, as the name implies, defines a section of con-
tent, while the @yield directive is used to display the contents of a given section.

Now that we have defined a layout for our application, let's define a child page that inherits
the layout.

Extending A Layout
When defining a child page, you may use the Blade @extends directive to specify which lay-
out the child page should "inherit". Views which @extends a Blade layout may inject con-
tent into the layout's sections using @section directives. Remember, as seen in the example
above, the contents of these sections will be displayed in the layout using @yield:

<!-- Stored in resources/views/child.blade.php -->

@extends('layouts.master')

@section('title', 'Page Title')

@section('sidebar')
 @@parent

 <p>This is appended to the master sidebar.</p>
@endsection

@section('content')
 <p>This is my body content.</p>
@endsection

In this example, the sidebar section is utilizing the @parent directive to append (rather than
overwriting) content to the layout's sidebar. The @parent directive will be replaced by the
content of the layout when the view is rendered.

Of course, just like plain PHP views, Blade views may be returned from routes using the
global view helper function:

Route::get('blade', function () {
 return view('child');
});

UNIT-3 Blade Template, Form and Validation
 Blade Template

91 Prepared by: Prof. Hardik Chavda

Including Subviews
Blade's @include directive allows you to include a Blade view from within another view. All
variables that are available to the parent view will be made available to the included view:

<div>
 @include('shared.errors')

 <form>
 <!-- Form Contents -->
 </form>
</div>

Even though the included view will inherit all data available in the parent view, you may also
pass an array of extra data to the included view:

@include('view.name', ['some' => 'data'])

If you attempt to @include a view which does not exist, Laravel will throw an error. If you
would like to include a view that may or may not be present, you should use the @includeIf
directive:

@includeIf('view.name', ['some' => 'data'])

If you would like to @include a view if a given boolean expression evaluates to true, you
may use the @includeWhen directive:

@includeWhen($boolean, 'view.name', ['some' => 'data'])

If you would like to @include a view if a given boolean expression evaluates to false, you
may use the @includeUnless directive:

@includeUnless($boolean, 'view.name', ['some' => 'data'])

To include the first view that exists from a given array of views, you may use the includeFirst
directive:

@includeFirst(['custom.admin', 'admin'], ['some' => 'data'])

UNIT-3 Blade Template, Form and Validation
 Blade Template

92 Prepared by: Prof. Hardik Chavda

Stacks
Blade allows you to push to named stacks which can be rendered somewhere else in anoth-
er view or layout. This can be particularly useful for specifying any JavaScript libraries re-
quired by your child views:

@push('scripts')
 <script src="/example.js"></script>
@endpush

You may push to a stack as many times as needed. To render the complete stack contents,
pass the name of the stack to the @stack directive:

<head>
 <!-- Head Contents -->

 @stack('scripts')
</head>

If you would like to prepend content onto the beginning of a stack, you should use the
@prepend directive:

@push('scripts')
 This will be second...
@endpush

@prepend('scripts')
 This will be first...
@endprepend

Service Injection
The @inject directive may be used to retrieve a service from the Laravel service container.
The first argument passed to @inject is the name of the variable the service will be placed
into, while the second argument is the class or interface name of the service you wish to re-
solve:

@inject('metrics', 'App\Services\MetricsService')

<div>
 Monthly Revenue: {{ $metrics->monthlyRevenue() }}.
</div>

Extending Blade
Blade allows you to define your own custom directives using the directive method. When
the Blade compiler encounters the custom directive, it will call the provided callback with
the expression that the directive contains.

UNIT-3 Blade Template, Form and Validation
 Blade Template

93 Prepared by: Prof. Hardik Chavda

The following example creates a @datetime($var) directive which formats a given $var,
which should be an instance of DateTime:

<?php

namespace App\Providers;

use Illuminate\Support\Facades\Blade;
use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider
{
 /**
 * Register any application services.
 *
 * @return void
 */
 public function register()
 {
 //
 }

 /**
 * Bootstrap any application services.
 *
 * @return void
 */
 public function boot()
 {
 Blade::directive('datetime', function ($expression) {
 return "<?php echo ($expression)->format('m/d/Y H:i'); ?>";
 });
 }
}

As you can see, we will chain the format method onto whatever expression is passed into
the directive. So, in this example, the final PHP generated by this directive will be:

<?php echo ($var)->format('m/d/Y H:i'); ?>

Blade Operators

UNIT-3 Blade Template, Form and Validation
 Forms

94 Prepared by: Prof. Hardik Chavda

Laravel Collective
Forms & HTML

Installation
Begin by installing this package through Composer. Edit your project's composer.json file to
require laravelcollective/html.

$ composer require laravelcollective/html

Looking to install this package in Lumen? First of all, making this package compatible with
Lumen will require some core changes to Lumen, which we believe would dampen the ef-
fectiveness of having Lumen in the first place. Secondly, it is our belief that if you need this
package in your application, then you should be using Laravel anyway

Opening A Form
{!! Form::open(['url' => 'foo/bar']) !!}
 //
{!! Form::close() !!}

By default, a POST method will be assumed; however, you are free to specify another meth-
od:

echo Form::open(['url' => 'foo/bar', 'method' => 'put'])

Note: Since HTML forms only support POST and GET, PUT and DELETE methods will be
spoofed by automatically adding a _method hidden field to your form.

You may also open forms that point to named routes or controller actions:

echo Form::open(['route' => 'route.name'])

echo Form::open(['action' => 'Controller@method'])

You may pass in route parameters as well:

echo Form::open(['route' => ['route.name', $user->id]])

echo Form::open(['action' => ['Controller@method', $user->id]])

If your form is going to accept file uploads, add a files option to your array:

echo Form::open(['url' => 'foo/bar', 'files' => true])

UNIT-3 Blade Template, Form and Validation
 Forms

95 Prepared by: Prof. Hardik Chavda

Labels
Generating A Label Element
echo Form::label('email', 'E-Mail Address');

Specifying Extra HTML Attributes
echo Form::label('email', 'E-Mail Address', ['class' => 'awesome']);

Note: After creating a label, any form element you create with a name matching the label
name will automatically receive an ID matching the label name as well.

Generating A Text Input
echo Form::text('username');

Specifying A Default Value
echo Form::text('email', 'example@gmail.com');

Note: The hidden and textarea methods have the same signature as the text method.

Generating A Password Input
echo Form::password('password', ['class' => 'awesome']);

Generating Other Inputs
echo Form::email($name, $value = null, $attributes = []);
echo Form::file($name, $attributes = []);

Checkboxes and Radio Buttons
Generating A Checkbox Or Radio Input
echo Form::checkbox('name', 'value');

echo Form::radio('name', 'value');

Generating A Checkbox Or Radio Input That Is Checked
echo Form::checkbox('name', 'value', true);

echo Form::radio('name', 'value', true);

Number
Generating A Number Input
echo Form::number('name', 'value');

Date
Generating A Date Input
echo Form::date('name', \Carbon\Carbon::now());

File Input
Generating A File Input
echo Form::file('image');

Note: The form must have been opened with the files option set to true.

UNIT-3 Blade Template, Form and Validation
 Forms

96 Prepared by: Prof. Hardik Chavda

Drop-Down Lists
Generating A Drop-Down List
echo Form::select('size', ['L' => 'Large', 'S' => 'Small']);

Generating A Drop-Down List With Selected Default
echo Form::select('size', ['L' => 'Large', 'S' => 'Small'], 'S');

Generating a Drop-Down List With an Empty Placeholder
This will create an <option> element with no value as the very first option of your drop-
down.

echo Form::select('size', ['L' => 'Large', 'S' => 'Small'], null, ['placeholder' => 'Pick a size...']);

Generating A Grouped List
echo Form::select('animal',[
 'Cats' => ['leopard' => 'Leopard'],
 'Dogs' => ['spaniel' => 'Spaniel'],
]);

Generating A Drop-Down List With A Range
echo Form::selectRange('number', 10, 20);

Generating A List With Month Names
echo Form::selectMonth('month');

Buttons
Generating A Submit Button
echo Form::submit('Click Me!');

Note: Need to create a button element? Try the button method. It has the same signature
as submit.

Custom Macros
Registering A Form Macro
It's easy to define your own custom Form class helpers called "macros". Here's how it works.
First, simply register the macro with a given name and a Closure:

Form::macro('myField', function()
{
 return '<input type="awesome">';
});

Now you can call your macro using its name:

Calling A Custom Form Macro
echo Form::myField();

UNIT-3 Blade Template, Form and Validation
 Forms

97 Prepared by: Prof. Hardik Chavda

CSRF Protection
Adding The CSRF Token To A Form
Laravel provides an easy method of protecting your application from cross-site request for-
geries. First, a random token is placed in your user's session. If you use the Form::open
method with POST, PUT or DELETE the CSRF token will be added to your forms as a hidden
field automatically. Alternatively, if you wish to generate the HTML for the hidden CSRF
field, you may use the token method:

echo Form::token();

Attaching The CSRF Filter To A Route
Route::post('profile',
 [
 'before' => 'csrf',
 function()
 {
 //
 }
]
);

UNIT-3 Blade Template, Form and Validation
 Validation

98 Prepared by: Prof. Hardik Chavda

Defining The Routes
First, let's assume we have the following routes defined in our app/Http/routes.php file:

// Display a form to create a blog post...
Route::get('post/create', 'PostController@create');

// Store a new blog post...
Route::post('post', 'PostController@store');

Of course, the GET route will display a form for the user to create a new blog post, while the
POST route will store the new blog post in the database.

Creating The Controller
Next, let's take a look at a simple controller that handles these routes. We'll leave the store
method empty for now:

namespace App\Http\Controllers;

use Illuminate\Http\Request;
use App\Http\Controllers\Controller;

class PostController extends Controller
{
 public function create()
 {
 return view('post.create');
 }

 public function store(Request $request)
 {
 // Validate and store the blog post...
 }
}

Writing the Validation Logic
Now we are ready to fill in our store method with the logic to validate the new blog post. If
you examine your application's base controller (App\Http\Controllers\Controller) class, you
will see that the class uses a ValidatesRequests trait. This trait provides a convenient vali-
date method in all of your controllers.

The validate method accepts an incoming HTTP request and a set of validation rules. If the
validation rules pass, your code will keep executing normally; however, if validation fails, an
exception will be thrown and the proper error response will automatically be sent back to
the user. In the case of a traditional HTTP request, a redirect response will be generated,
while a JSON response will be sent for AJAX requests.

UNIT-3 Blade Template, Form and Validation
 Validation

99 Prepared by: Prof. Hardik Chavda

To get a better understanding of the validate method, let's jump back into the store meth-
od:

public function store(Request $request)
{
 $this->validate($request, [
 'title' => 'required|unique:posts|max:255',
 'body' => 'required',
]);

 // The blog post is valid, store in database...
}

As you can see, we simply pass the incoming HTTP request and desired validation rules into
the validate method. Again, if the validation fails, the proper response will automatically be
generated. If the validation passes, our controller will continue executing normally.

Stopping On First Validation Failure
Sometimes you may wish to stop running validation rules on an attribute after the first vali-
dation failure. To do so, assign the bail rule to the attribute:
$this->validate($request, [
 'title' => 'bail|required|unique:posts|max:255',
 'body' => 'required',
]);

In this example, if the required rule on the title attribute fails, the unique rule will not be
checked. Rules will be validated in the order they are assigned.

A Note On Nested Attributes
If your HTTP request contains "nested" parameters, you may specify them in your validation
rules using "dot" syntax:

$this->validate($request, [
 'title' => 'required|unique:posts|max:255',
 'author.name' => 'required',
 'author.description' => 'required',
]);

Displaying The Validation Errors
So, what if the incoming request parameters do not pass the given validation rules? As men-
tioned previously, Laravel will automatically redirect the user back to their previous loca-
tion. In addition, all of the validation errors will automatically be flashed to the session.

Again, notice that we did not have to explicitly bind the error messages to the view in our
GET route. This is because Laravel will check for errors in the session data, and automatically
bind them to the view if they are available. The $errors variable will be an instance of Illu-
minate\Support\MessageBag. For more information on working with this object, check out
its documentation.

UNIT-3 Blade Template, Form and Validation
 Validation

100 Prepared by: Prof. Hardik Chavda

Note: The $errors variable is bound to the view by the Illumi-
nate\View\Middleware\ShareErrorsFromSession middleware, which is provided by the web
middleware group. When this middleware is applied an $errors variable will always be avail-
able in your views, allowing you to conveniently assume the $errors variable is always de-
fined and can be safely used.

So, in our example, the user will be redirected to our controller's create method when vali-
dation fails, allowing us to display the error messages in the view:

<!-- /resources/views/post/create.blade.php -->
 <h1>Create Post</h1>
@if (count($errors) > 0)
 <div class="alert alert-danger">

 @foreach ($errors->all() as $error)
 {{ $error }}
 @endforeach

 </div>
@endif

Validating Arrays
Validating array form input fields doesn't have to be a pain. For example, to validate that
each e-mail in a given array input field is unique, you may do the following:
$validator = Validator::make($request->all(), [
 'person.*.email' => 'email|unique:users',
 'person.*.first_name' => 'required_with:person.*.last_name',
]);

Likewise, you may use the * character when specifying your validation messages in your
language files, making it a breeze to use a single validation message for array based fields:
'custom' => [
 'person.*.email' => [
 'unique' => 'Each person must have a unique e-mail address',
]
],

Customizing The Error Messages
You may customize the error messages used by the form request by overriding the messag-
es method. This method should return an array of attribute / rule pairs and their corre-
sponding error messages:
public function messages(){

 return [

 'title.required' => 'A title is required',

 'body.required' => 'A message is required',

];

}

UNIT-3 Blade Template, Form and Validation
 Available Validators

101 Prepared by: Prof. Hardik Chavda

accepted
The field under validation must be yes, on, 1, or true. This is useful for validating "Terms of
Service" acceptance.

after:date
The field under validation must be a value after a given date. The dates will be passed into
the strtotime PHP function:

'start_date' => 'required|date|after:tomorrow'

Instead of passing a date string to be evaluated by strtotime, you may specify another field
to compare against the date:
'finish_date' => 'required|date|after:start_date'

alpha

The field under validation must be entirely alphabetic characters.

alpha_dash
The field under validation may have alpha-numeric characters, as well as dashes and under-
scores.

alpha_num
The field under validation must be entirely alpha-numeric characters.

array
The field under validation must be a PHP array.

before:date
The field under validation must be a value preceding the given date. The dates will be
passed into the PHP strtotime function.

between:min,max
The field under validation must have a size between the given min and max. Strings, numer-
ics, and files are evaluated in the same fashion as the size rule.

boolean
The field under validation must be able to be cast as a boolean. Accepted input are true,
false, 1, 0, "1", and "0".

date
The field under validation must be a valid date according to the strtotime PHP function.

date_format:format
The field under validation must match the given format. The format will be evaluated using
the PHP date_parse_from_format function. You should use either date or date_format
when validating a field, not both.

different:field
The field under validation must have a different value than field.

digits:value

The field under validation must be numeric and must have an exact length of value.

UNIT-3 Blade Template, Form and Validation
 Available Validators

102 Prepared by: Prof. Hardik Chavda

digits_between:min,max
The field under validation must have a length between the given min and max.

email
The field under validation must be formatted as an e-mail address.

exists:table,column
The field under validation must exist on a given database table.

Basic Usage Of Exists Rule
'state' => 'exists:states'

Specifying A Custom Column Name
'state' => 'exists:states,abbreviation'

You may also specify more conditions that will be added as "where" clauses to the query:

'email' => 'exists:staff,email,account_id,1'

These conditions may be negated using the ! sign:

'email' => 'exists:staff,email,role,!admin'

You may also pass NULL or NOT_NULL to the "where" clause:

'email' => 'exists:staff,email,deleted_at,NULL'
'email' => 'exists:staff,email,deleted_at,NOT_NULL'

Occasionally, you may need to specify a specific database connection to be used for the ex-
ists query. You can accomplish this by prepending the connection name to the table name
using "dot" syntax:

'email' => 'exists:connection.staff,email'

file

The field under validation must be a successfully uploaded file.

in:foo,bar,...
The field under validation must be included in the given list of values.

integer
The field under validation must be an integer.

max:value
The field under validation must be less than or equal to a maximum value. Strings, numerics,
and files are evaluated in the same fashion as the size rule

min:value
The field under validation must have a minimum value. Strings, numerics, and files are eval-
uated in the same fashion as the size rule.

UNIT-3 Blade Template, Form and Validation
 Available Validators

103 Prepared by: Prof. Hardik Chavda

not_in:foo,bar,...
The field under validation must not be included in the given list of values.

numeric
The field under validation must be numeric.

regex:pattern
The field under validation must match the given regular expression.
Note: When using the regex pattern, it may be necessary to specify rules in an array instead
of using pipe delimiters, especially if the regular expression contains a pipe character.

required
The field under validation must be present in the input data and not empty. A field is con-
sidered "empty" if one of the following conditions are true:

The value is null.
The value is an empty string.
The value is an empty array or empty Countable object.
The value is an uploaded file with no path.

Custom Validation Rules
Laravel provides a variety of helpful validation rules; however, you may wish to specify some
of your own. One method of registering custom validation rules is using the extend method
on the Validator facade. Let's use this method within a service provider to register a custom
validation rule:

namespace App\Providers;

use Validator;
use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider{
 public function boot() {
 Validator::extend('foo', function($attribute, $value, $parameters, $validator) {
 return $value == 'foo';
 });
 }

function register() {
 //
 }
}

The custom validator Closure receives four arguments: the name of the $attribute being val-
idated, the $value of the attribute, an array of $parameters passed to the rule, and the Vali-
dator instance.

UNIT-4 Migrations, SQL Interaction and Query Builder
 Migrations

104 Prepared by: Prof. Hardik Chavda

Generating Migrations

To create a migration, use the make:migration Artisan command:

php artisan make:migration create_users_table

The new migration will be placed in your database/migrations directory. Each migration file
name contains a timestamp which allows Laravel to determine the order of the migrations.

The --table and --create options may also be used to indicate the name of the table and
whether the migration will be creating a new table. These options simply pre-fill the gener-
ated migration stub file with the specified table:

php artisan make:migration add_votes_to_users_table --table=users
php artisan make:migration create_users_table --create=users

If you would like to specify a custom output path for the generated migration, you

may use the --path option when executing the make:migration command. The provided
path should be relative to your application's base path.

Migration Structure
A migration class contains two methods: up and down. The up method is used to

add new tables, columns, or indexes to your database, while the down method should simp-
ly reverse the operations performed by the up method.

Within both of these methods you may use the Laravel schema builder to expressive-
ly create and modify tables. To learn about all of the methods available on the Schema
builder, check out its documentation. For example, let's look at a sample migration that cre-
ates a flights table:

<?php
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;
class CreateFlightsTable extends Migration{
 public function up() {
 Schema::create('flights', function (Blueprint $table) {
 $table->increments('id');
 $table->string('name');
 $table->string('airline');
 $table->timestamps();
 });
 }
 public function down() {

 Schema::drop('flights');
 }
}

UNIT-4 Migrations, SQL Interaction and Query Builder
 Migrations

105 Prepared by: Prof. Hardik Chavda

Creation Migration
To run all outstanding migrations for your application, use migrate Artisan command. If you
are using the Homestead virtual machine, you should run this command from within your
VM:

php artisan migrate

If you receive a "class not found" error when running migrations, try running the composer
dump-autoload command and re-issuing the migrate command.

Rolling Back Migrations

To rollback the latest migration "operation", you may use the rollback command. Note that
this rolls back the last "batch" of migrations that ran, which may include multiple migration
files:

php artisan migrate:rollback

Writing Migrations
Creating Tables

To create a new database table, use the create method on the Schema facade. The
create method accepts two arguments. The first is the name of the table, while the second
is a Closure which receives a Blueprint object used to define the new table:

Schema::create('users', function (Blueprint $table) {
 $table->increments('id');
});

Of course, when creating the table, you may use any of the schema builder's column

methods to define the table's columns.

Checking For Table / Column Existence

You may easily check for the existence of a table or column using the hasTable and
hasColumn methods:

if (Schema::hasTable('users')) {

 //
}
if (Schema::hasColumn('users', 'email')) {

 //
}

Renaming / Dropping Tables
To rename an existing database table, use the rename method:

Schema::rename($from, $to);

To drop an existing table, you may use the drop or dropIfExists methods:

Schema::drop('users');
Schema::dropIfExists('users');

UNIT-4 Migrations, SQL Interaction and Query Builder
 Migrations

106 Prepared by: Prof. Hardik Chavda

Renaming Tables with Foreign Keys
Before renaming a table, you should verify that any foreign key constraints on the table
have an explicit name in your migration files instead of letting Laravel assign a convention
based name. Otherwise, the foreign key constraint name will refer to the old table name.

Creating Columns
To update an existing table, we will use the table method on the Schema facade. Like the
create method, the table method accepts two arguments: the name of the table and a Clo-
sure that receives a Blueprint instance we can use to add columns to the table:
Schema::table('users', function ($table) {
 $table->string('email');
});

Available Column Types
Of course, the schema builder contains a variety of column types that you may use when
building your tables:

Command Description

$table->bigIncrements('id');
Incrementing ID (primary key) using a "UNSIGNED BIG INTE-
GER" equivalent.

$table->bigInteger('votes'); BIGINT equivalent for the database.

$table->binary('data'); BLOB equivalent for the database.

$table->boolean('confirmed'); BOOLEAN equivalent for the database.

$table->char('name', 4); CHAR equivalent with a length.

$table->date('created_at'); DATE equivalent for the database.

$table->dateTime('created_at'); DATETIME equivalent for the database.

$table->decimal('amount', 5, 2); DECIMAL equivalent with a precision and scale.

$table->double('column', 15, 8);
DOUBLE equivalent with precision, 15 digits in total and 8 after
the decimal point.

$table->enum('choices', ['foo', 'bar']); ENUM equivalent for the database.

$table->float('amount'); FLOAT equivalent for the database.

$table->increments('id');
Incrementing ID (primary key) using a "UNSIGNED INTEGER"
equivalent.

$table->integer('votes'); INTEGER equivalent for the database.

$table->ipAddress('visitor'); IP address equivalent for the database.

$table->json('options'); JSON equivalent for the database.

$table->longText('description'); LONGTEXT equivalent for the database.

$table->macAddress('device'); MAC address equivalent for the database.

$table->mediumInteger('numbers'); MEDIUMINT equivalent for the database.

$table->mediumText('description'); MEDIUMTEXT equivalent for the database.

$table->rememberToken(); Adds remember_token as VARCHAR(100) NULL.

$table->smallInteger('votes'); SMALLINT equivalent for the database.

$table->string('email'); VARCHAR equivalent column.

$table->string('name', 100); VARCHAR equivalent with a length.

$table->text('description'); TEXT equivalent for the database.

$table->time('sunrise'); TIME equivalent for the database.

UNIT-4 Migrations, SQL Interaction and Query Builder
 Migrations

107 Prepared by: Prof. Hardik Chavda

Command Description

$table->tinyInteger('numbers'); TINYINT equivalent for the database.

$table->timestamp('added_on'); TIMESTAMP equivalent for the database.

$table->timestamps(); Adds created_at and updated_at columns.

Column Modifiers
In addition to the column types listed above, there are several other column "modifiers"
which you may use while adding the column. For example, to make the column "nullable",
you may use the nullable method:
Schema::table('users', function ($table) {
 $table->string('email')->nullable();
});

Below is a list of all the available column modifiers. This list does not include the index modi-
fiers:

Modifier Description

->first() Place the column "first" in the table (MySQL Only)

->after('column') Place the column "after" another column (MySQL Only)

->nullable() Allow NULL values to be inserted into the column

->default($value) Specify a "default" value for the column

->unsigned() Set integer columns to UNSIGNED

->comment('my comment') Add a comment to a column

Database seeding
Introduction

Laravel includes a simple method of seeding your database with test data using seed
classes. All seed classes are stored in database/seeds. Seed classes may have any name you
wish, but probably should follow some sensible convention, such as UsersTableSeeder, etc.
By default, a DatabaseSeeder class is defined for you. From this class, you may use the call
method to run other seed classes, allowing you to control the seeding order.

Writing Seeders

To generate a seeder, you may issue the make:seeder Artisan command. All seeders
generated by the framework will be placed in the database/seeds directory:

php artisan make:seeder UsersTableSeeder

A seeder class only contains one method by default: run. This method is called when

the db:seed Artisan command is executed. Within the run method, you may insert data into
your database however you wish. You may use the query builder to manually insert data or
you may use Eloquent model factories.

As an example, let's modify the DatabaseSeeder class which is included with a de-

fault installation of Laravel. Let's add a database insert statement to the run method:

<?php

UNIT-4 Migrations, SQL Interaction and Query Builder
 Migrations

108 Prepared by: Prof. Hardik Chavda

use Illuminate\Database\Seeder;
use Illuminate\Database\Eloquent\Model;
class DatabaseSeeder extends Seeder
{
 public function run()
 {
 DB::table('users')->insert([
 'name' => str_random(10),
 'email' => str_random(10).'@gmail.com',
 'password' => bcrypt('secret'),
]);
 }
}

Running Seeders
Once you have written your seeder classes, you may use the db:seed Artisan command to
seed your database. By default, the db:seed command runs the DatabaseSeeder class, which
may be used to call other seed classes. However, you may use the --class option to specify a
specific seeder class to run individually:

php artisan db:seed

php artisan db:seed --class=UsersTableSeeder

You may also seed your database using the migrate:refresh command, which will also roll-
back and re-run all of your migrations. This command is useful for completely re-building
your database:

php artisan migrate:refresh –seed

UNIT-4 Migrations, SQL Interaction and Query Builder
 Query Builder

109 Prepared by: Prof. Hardik Chavda

Running Raw SQL Queries
Once you have configured your database connection, you may run queries using the DB fa-
cade. The DB facade provides methods for each type of query: select, update, insert, delete,
and statement.

Running A Select Query
To run a basic query, we can use the select method on the DB facade:

<?php

namespace App\Http\Controllers;

use DB;
use App\Http\Controllers\Controller;

class UserController extends Controller
{
 public function index()
 {
 $users = DB::select('select * from users where active = ?', [1]);
 return view('user.index', ['users' => $users]);
 }
}

The first argument passed to the select method is the raw SQL query, while the second ar-
gument is any parameter bindings that need to be bound to the query. Typically, these are
the values of the where clause constraints. Parameter binding provides protection against
SQL injection.

The select method will always return an array of results. Each result within the array will be
a PHP StdClass object, allowing you to access the values of the results:

foreach ($users as $user) {
 echo $user->name;
}

Using Named Bindings
Instead of using ? to represent your parameter bindings, you may execute a query using
named bindings:

$results = DB::select('select * from users where id = :id', ['id' => 1]);

Running An Insert Statement
To execute an insert statement, you may use the insert method on the DB facade. Like se-
lect, this method takes the raw SQL query as its first argument, and bindings as the second
argument:

DB::insert('insert into users (id, name) values (?, ?)', [1, 'Dayle']);

UNIT-4 Migrations, SQL Interaction and Query Builder
 Query Builder

110 Prepared by: Prof. Hardik Chavda

Running An Update Statement
The update method should be used to update existing records in the database. The number
of rows affected by the statement will be returned by the method:

$affected = DB::update('update users set votes = 100 where name = ?', ['John']);

Running A Delete Statement
The delete method should be used to delete records from the database. Like update, the
number of rows deleted will be returned:

$deleted = DB::delete('delete from users');

Running A General Statement
Some database statements should not return any value. For these types of operations, you
may use the statement method on the DB facade:

DB::statement('drop table users');

Database Transactions
To run a set of operations within a database transaction, you may use the transaction
method on the DB facade. If an exception is thrown within the transaction Closure, the
transaction will automatically be rolled back. If the Closure executes successfully, the trans-
action will automatically be committed. You don't need to worry about manually rolling
back or committing while using the transaction method:

DB::transaction(function () {
 DB::table('users')->update(['votes' => 1]);

 DB::table('posts')->delete();
});

Manually Using Transactions
If you would like to begin a transaction manually and have complete control over rollbacks
and commits, you may use the beginTransaction method on the DB facade:

DB::beginTransaction();
You can rollback the transaction via the rollBack method:

DB::rollBack();
Lastly, you can commit a transaction via the commit method:

DB::commit();
Note: Using the DB facade's transaction methods also controls transactions for the query
builder and Eloquent ORM.

UNIT-4 Migrations, SQL Interaction and Query Builder
 Query Builder

111 Prepared by: Prof. Hardik Chavda

Introduction
The database query builder provides a convenient, fluent interface to creating and running
database queries. It can be used to perform most database operations in your application,
and works on all supported database systems.

Note: The Laravel query builder uses PDO parameter binding to protect your application
against SQL injection attacks. There is no need to clean strings being passed as bindings.

Retrieving Results
Retrieving All Rows From A Table

To begin a fluent query, use the table method on the DB facade. The table method returns a
fluent query builder instance for the given table, allowing you to chain more constraints on-
to the query and then finally get the results. In this example, let's just get all records from a
table:

<?php

namespace App\Http\Controllers;

use DB;
use App\Http\Controllers\Controller;

class UserController extends Controller
{
 public function index()
 {
 $users = DB::table('users')->get();

 return view('user.index', ['users' => $users]);
 }
}

Like raw queries, the get method returns an array of results where each result is an instance
of the PHP StdClass object. You may access each column's value by accessing the column as
a property of the object:

foreach ($users as $user) {
 echo $user->name;
}

Retrieving A Single Row / Column From A Table
If you just need to retrieve a single row from the database table, you may use the first
method. This method will return a single StdClass object:

$user = DB::table('users')->where('name', 'John')->first();

echo $user->name;

UNIT-4 Migrations, SQL Interaction and Query Builder
 Query Builder

112 Prepared by: Prof. Hardik Chavda

If you don't even need an entire row, you may extract a single value from a record using the
value method. This method will return the value of the column directly:

$email = DB::table('users')->where('name', 'John')->value('email');

Chunking Results From A Table
If you need to work with thousands of database records, consider using the chunk method.
This method retrieves a small "chunk" of the results at a time, and feeds each chunk into a
Closure for processing. This method is very useful for writing Artisan commands that process
thousands of records. For example, let's work with the entire users table in chunks of 100
records at a time:

DB::table('users')->orderBy('id')->chunk(100, function($users) {
 foreach ($users as $user) {
 //
 }
});

You may stop further chunks from being processed by returning false from the Closure:

DB::table('users')->orderBy('id')->chunk(100, function($users) {
 // Process the records...

 return false;
});

Retrieving A List Of Column Values
If you would like to retrieve an array containing the values of a single column, you may use
the pluck method. In this example, we'll retrieve an array of role titles:

$titles = DB::table('roles')->pluck('title');

foreach ($titles as $title) {
 echo $title;
}

You may also specify a custom key column for the returned array:

$roles = DB::table('roles')->pluck('title', 'name');

foreach ($roles as $name => $title) {
 echo $title;
}

Aggregates
The query builder also provides a variety of aggregate methods, such as count, max, min,
avg, and sum. You may call any of these methods after constructing your query:

$users = DB::table('users')->count();

$price = DB::table('orders')->max('price');

UNIT-4 Migrations, SQL Interaction and Query Builder
 Query Builder

113 Prepared by: Prof. Hardik Chavda

Of course, you may combine these methods with other clauses to build your query:

$price = DB::table('orders')
 ->where('finalized', 1)
 ->avg('price');

Selects
Specifying A Select Clause
Of course, you may not always want to select all columns from a database table. Using the
select method, you can specify a custom select clause for the query:

$users = DB::table('users')->select('name', 'email as user_email')->get();

The distinct method allows you to force the query to return distinct results:

$users = DB::table('users')->distinct()->get();

If you already have a query builder instance and you wish to add a column to its existing se-
lect clause, you may use the addSelect method:

$query = DB::table('users')->select('name');

$users = $query->addSelect('age')->get();

Raw Expressions
Sometimes you may need to use a raw expression in a query. These expressions will be in-
jected into the query as strings, so be careful not to create any SQL injection points! To cre-
ate a raw expression, you may use the DB::raw method:

$users = DB::table('users')
 ->select(DB::raw('count(*) as user_count, status'))
 ->where('status', '<>', 1)
 ->groupBy('status')
 ->get();

Joins
Inner Join Statement

The query builder may also be used to write join statements. To perform a basic SQL "inner
join", you may use the join method on a query builder instance. The first argument passed
to the join method is the name of the table you need to join to, while the remaining argu-
ments specify the column constraints for the join. Of course, as you can see, you can join to
multiple tables in a single query:

$users = DB::table('users')
 ->join('contacts', 'users.id', '=', 'contacts.user_id')
 ->join('orders', 'users.id', '=', 'orders.user_id')
 ->select('users.*', 'contacts.phone', 'orders.price')
 ->get();

UNIT-4 Migrations, SQL Interaction and Query Builder
 Query Builder

114 Prepared by: Prof. Hardik Chavda

Left Join Statement
If you would like to perform a "left join" instead of an "inner join", use the leftJoin method.
The leftJoin method has the same signature as the join method:

$users = DB::table('users')
 ->leftJoin('posts', 'users.id', '=', 'posts.user_id')
 ->get();

Cross Join Statement
To perform a "cross join" use the crossJoin method with the name of the table you wish to
cross join to. Cross joins generate a cartesian product between the first table and the joined
table:

$users = DB::table('sizes')
 ->crossJoin('colours')
 ->get();

Advanced Join Statements
You may also specify more advanced join clauses. To get started, pass a Closure as the sec-
ond argument into the join method. The Closure will receive a JoinClause object which al-
lows you to specify constraints on the join clause:

DB::table('users')
 ->join('contacts', function ($join) {
 $join->on('users.id', '=', 'contacts.user_id')->orOn(...);
 })
 ->get();

If you would like to use a "where" style clause on your joins, you may use the where and
orWhere methods on a join. Instead of comparing two columns, these methods will com-
pare the column against a value:

DB::table('users')
 ->join('contacts', function ($join) {
 $join->on('users.id', '=', 'contacts.user_id')
 ->where('contacts.user_id', '>', 5);
 })
 ->get();

Where Clauses
Simple Where Clauses

To add where clauses to the query, use the where method on a query builder instance. The
most basic call to where requires three arguments. The first argument is the name of the
column. The second argument is an operator, which can be any of the database's supported
operators. The third argument is the value to evaluate against the column.

For example, here is a query that verifies the value of the "votes" column is equal to 100:

UNIT-4 Migrations, SQL Interaction and Query Builder
 Query Builder

115 Prepared by: Prof. Hardik Chavda

$users = DB::table('users')->where('votes', '=', 100)->get();

For convenience, if you simply want to verify that a column is equal to a given value, you
may pass the value directly as the second argument to the where method:

$users = DB::table('users')->where('votes', 100)->get();

Of course, you may use a variety of other operators when writing a where clause:

$users = DB::table('users')
 ->where('votes', '>=', 100)
 ->get();

$users = DB::table('users')
 ->where('votes', '<>', 100)
 ->get();

$users = DB::table('users')
 ->where('name', 'like', 'T%')
 ->get();

You may also pass an array of conditions to the where function:

$users = DB::table('users')->where([
 ['status', '=', '1'],
 ['subscribed', '<>', '1'],
])->get();

Or Statements
You may chain where constraints together, as well as add or clauses to the query. The or-
Where method accepts the same arguments as the where method:

$users = DB::table('users')
 ->where('votes', '>', 100)
 ->orWhere('name', 'John')
 ->get();

Additional Where Clauses

whereBetween

The whereBetween method verifies that a column's value is between two values:
$users = DB::table('users')
 ->whereBetween('votes', [1, 100])->get();

UNIT-4 Migrations, SQL Interaction and Query Builder
 Query Builder

116 Prepared by: Prof. Hardik Chavda

whereNotBetween
The whereNotBetween method verifies that a column's value lies outside of two values:

$users = DB::table('users')
 ->whereNotBetween('votes', [1, 100])
 ->get();

whereIn / whereNotIn
The whereIn method verifies that a given column's value is contained within the given array:

$users = DB::table('users')
 ->whereIn('id', [1, 2, 3])
 ->get();

The whereNotIn method verifies that the given column's value is not contained in the given
array:

$users = DB::table('users')
 ->whereNotIn('id', [1, 2, 3])
 ->get();

whereNull / whereNotNull

The whereNull method verifies that the value of the given column is NULL:
$users = DB::table('users')
 ->whereNull('updated_at')
 ->get();

The whereNotNull method verifies that the column's value is not NULL:
$users = DB::table('users')
 ->whereNotNull('updated_at')
 ->get();

whereColumn
The whereColumn method may be used to verify that two columns are equal:
$users = DB::table('users')
 ->whereColumn('first_name', 'last_name');

You may also pass a comparison operator to the method:

The whereColumn method can also be passed an array of multiple conditions. These condi-
tions will be joined using the and operator:

$users = DB::table('users')
 ->whereColumn([
 ['first_name', 'last_name'],
 ['updated_at', '>', 'created_at']
]);

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

117 Prepared by: Prof. Hardik Chavda

Defining Models
To get started, let's create an Eloquent model. Models typically live in the app directory, but
you are free to place them anywhere that can be auto-loaded according to your compos-
er.json file. All Eloquent models extend Illuminate\Database\Eloquent\Model class.

The easiest way to create a model instance is using the make:model Artisan command:

php artisan make:model User

If you would like to generate a database migration when you generate the model, you may
use the --migration or -m option:

php artisan make:model User --migration

php artisan make:model User -m

Eloquent Model Conventions
Now, let's look at an example Flight model class, which we will use to retrieve and store in-
formation from our flights database table:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Flight extends Model
{
 //
}

Table Names
Note that we did not tell Eloquent which table to use for our Flight model. The "snake case",
plural name of the class will be used as the table name unless another name is explicitly
specified. So, in this case, Eloquent will assume the Flight model stores records in the flights
table. You may specify a custom table by defining a table property on your model:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Flight extends Model
{
 protected $table = 'my_flights';
}

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

118 Prepared by: Prof. Hardik Chavda

Primary Keys
Eloquent will also assume that each table has a primary key column named id. You may de-
fine a $primaryKey property to override this convention.

In addition, Eloquent assumes that the primary key is an incrementing integer value, which
means that by default the primary key will be cast to an int automatically. If you wish to use
a non-incrementing or a non-numeric primary key you must set the public $incrementing
property on your model to false.

Timestamps
By default, Eloquent expects created_at and updated_at columns to exist on your tables. If
you do not wish to have these columns automatically managed by Eloquent, set the
$timestamps property on your model to false:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Flight extends Model
{
 public $timestamps = false;
}

If you need to customize the format of your timestamps, set the $dateFormat property on
your model. This property determines how date attributes are stored in the database, as
well as their format when the model is serialized to an array or JSON:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Flight extends Model
{
 /**
 * The storage format of the model's date columns.
 *
 * @var string
 */
 protected $dateFormat = 'U';
}

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

119 Prepared by: Prof. Hardik Chavda

Database Connection
By default, all Eloquent models will use the default database connection configured for your
application. If you would like to specify a different connection for the model, use the $con-
nection property:

<?php

namespace App;

Retrieving Multiple Models
Once you have created a model and its associated database table, you are ready to start re-
trieving data from your database. Think of each Eloquent model as a powerful query builder
allowing you to fluently query the database table associated with the model. For example:

<?php

namespace App\Http\Controllers;

use App\Flight;
use App\Http\Controllers\Controller;

class FlightController extends Controller
{
 /**
 * Show a list of all available flights.
 *
 * @return Response
 */
 public function index()
 {
 $flights = Flight::all();

 return view('flight.index', ['flights' => $flights]);
 }
}

Accessing Column Values
If you have an Eloquent model instance, you may access the column values of the model by
accessing the corresponding property. For example, let's loop through each Flight instance
returned by our query and echo the value of the name column:

foreach ($flights as $flight) {
 echo $flight->name;
}

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

120 Prepared by: Prof. Hardik Chavda

Adding Additional Constraints
The Eloquent all method will return all of the results in the model's table. Since each Elo-
quent model serves as a query builder, you may also add constraints to queries, and then
use the get method to retrieve the results:

$flights = App\Flight::where('active', 1)
 ->orderBy('name', 'desc')
 ->take(10)
 ->get();

Note: Since Eloquent models are query builders, you should review all of the methods avail-
able on the query builder. You may use any of these methods in your Eloquent queries.

Collections
For Eloquent methods like all and get which retrieve multiple results, an instance of Illumi-
nate\Database\Eloquent\Collection will be returned. The Collection class provides a variety
of helpful methods for working with your Eloquent results. Of course, you may simply loop
over this collection like an array:

foreach ($flights as $flight) {
 echo $flight->name;
}

Chunking Results
If you need to process thousands of Eloquent records, use the chunk command. The chunk
method will retrieve a "chunk" of Eloquent models, feeding them to a given Closure for pro-
cessing. Using the chunk method will conserve memory when working with large result sets:

Flight::chunk(200, function ($flights) {
 foreach ($flights as $flight) {
 //
 }
});

The first argument passed to the method is the number of records you wish to receive per
"chunk". The Closure passed as the second argument will be called for each chunk that is
retrieved from the database.

Note: The database query is re-executed for each chunk.

Retrieving Single Models / Aggregates
Of course, in addition to retrieving all of the records for a given table, you may also retrieve
single records using find and first. Instead of returning a collection of models, these meth-
ods return a single model instance:

// Retrieve a model by its primary key...
$flight = App\Flight::find(1);

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

121 Prepared by: Prof. Hardik Chavda

// Retrieve the first model matching the query constraints...
$flight = App\Flight::where('active', 1)->first();

You may also call the find method with an array of primary keys, which will return a collec-
tion of the matching records:

$flights = App\Flight::find([1, 2, 3]);

Not Found Exceptions
Sometimes you may wish to throw an exception if a model is not found. This is particularly
useful in routes or controllers. The findOrFail and firstOrFail methods will retrieve the first
result of the query. However, if no result is found, a Illumi-
nate\Database\Eloquent\ModelNotFoundException will be thrown:

$model = App\Flight::findOrFail(1);

$model = App\Flight::where('legs', '>', 100)->firstOrFail();

If the exception is not caught, a 404 HTTP response is automatically sent back to the user, so
it is not necessary to write explicit checks to return 404 responses when using these meth-
ods:

Route::get('/api/flights/{id}', function ($id) {
 return App\Flight::findOrFail($id);
});

Retrieving Aggregates
Of course, you may also use count, sum, max, and other aggregate functions provided by
the query builder. These methods return the appropriate scalar value instead of a full model
instance:

$count = App\Flight::where('active', 1)->count();

$max = App\Flight::where('active', 1)->max('price');

Inserting & Updating Models
Basic Inserts
To create a new record in the database, simply create a new model instance, set attributes
on the model, then call the save method:

<?php

namespace App\Http\Controllers;

use App\Flight;
use Illuminate\Http\Request;
use App\Http\Controllers\Controller;

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

122 Prepared by: Prof. Hardik Chavda

class FlightController extends Controller
{
 public function store(Request $request)
 {
 // Validate the request...

 $flight = new Flight;

 $flight->name = $request->name;

 $flight->save();
 }
}

In this example, we simply assign the name parameter from the incoming HTTP request to
the name attribute of the App\Flight model instance. When we call the save method, a rec-
ord will be inserted into the database. The created_at and updated_at timestamps will au-
tomatically be set when the save method is called, so there is no need to set them manually.

Basic Updates
The save method may also be used to update models that already exist in the database. To
update a model, you should retrieve it, set any attributes you wish to update, and then call
the save method. Again, the updated_at timestamp will automatically be updated, so there
is no need to manually set its value:

$flight = App\Flight::find(1);

$flight->name = 'New Flight Name';

$flight->save();

Updates can also be performed against any number of models that match a given query. In
this example, all flights that are active and have a destination of San Diego will be marked as
delayed:

App\Flight::where('active', 1)
 ->where('destination', 'San Diego')
 ->update(['delayed' => 1]);

The update method expects an array of column and value pairs representing the columns
that should be updated.

Mass Assignment
You may also use the create method to save a new model in a single line. The inserted mod-
el instance will be returned to you from the method. However, before doing so, you will
need to specify either a fillable or guarded attribute on the model, as all Eloquent models
protect against mass-assignment.

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

123 Prepared by: Prof. Hardik Chavda

A mass-assignment vulnerability occurs when a user passes an unexpected HTTP parameter
through a request, and that parameter changes a column in your database you did not ex-
pect. For example, a malicious user might send an is_admin parameter through an HTTP re-
quest, which is then mapped onto your model's create method, allowing the user to esca-
late themselves to an administrator.

So, to get started, you should define which model attributes you want to make mass assign-
able. You may do this using the $fillable property on the model. For example, let's make the
name attribute of our Flight model mass assignable:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Flight extends Model
{
 /**
 * The attributes that are mass assignable.
 *
 * @var array
 */
 protected $fillable = ['name'];
}

Once we have made the attributes mass assignable, we can use the create method to insert
a new record in the database. The create method returns the saved model instance:

$flight = App\Flight::create(['name' => 'Flight 10']);

While $fillable serves as a "white list" of attributes that should be mass assignable, you may
also choose to use $guarded. The $guarded property should contain an array of attributes
that you do not want to be mass assignable. All other attributes not in the array will be mass
assignable. So, $guarded functions like a "black list". Of course, you should use either $filla-
ble or $guarded - not both:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Flight extends Model
{
 /**
 * The attributes that aren't mass assignable.
 *
 * @var array

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

124 Prepared by: Prof. Hardik Chavda

 */
 protected $guarded = ['price'];
}

In the example above, all attributes except for price will be mass assignable.

Other Creation Methods
There are two other methods you may use to create models by mass assigning attributes:
firstOrCreate and firstOrNew. The firstOrCreate method will attempt to locate a database
record using the given column / value pairs. If the model can not be found in the database, a
record will be inserted with the given attributes.

The firstOrNew method, like firstOrCreate will attempt to locate a record in the database
matching the given attributes. However, if a model is not found, a new model instance will
be returned. Note that the model returned by firstOrNew has not yet been persisted to the
database. You will need to call save manually to persist it:

// Retrieve the flight by the attributes, or create it if it doesn't exist...
$flight = App\Flight::firstOrCreate(['name' => 'Flight 10']);

// Retrieve the flight by the attributes, or instantiate a new instance...
$flight = App\Flight::firstOrNew(['name' => 'Flight 10']);

Deleting Models
To delete a model, call the delete method on a model instance:
$flight = App\Flight::find(1);

$flight->delete();

Deleting An Existing Model By Key
In the example above, we are retrieving the model from the database before calling the de-
lete method. However, if you know the primary key of the model, you may delete the model
without retrieving it. To do so, call the destroy method:

App\Flight::destroy(1);

App\Flight::destroy([1, 2, 3]);

App\Flight::destroy(1, 2, 3);

Deleting Models By Query
Of course, you may also run a delete query on a set of models. In this example, we will de-
lete all flights that are marked as inactive:

$deletedRows = App\Flight::where('active', 0)->delete();

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

125 Prepared by: Prof. Hardik Chavda

Model Relationships
Database tables are often related to one another. For example, a blog post may have many
comments, or an order could be related to the user who placed it. Eloquent makes manag-
ing and working with these relationships easy, and supports several different types of rela-
tionships:

One To One
One To Many

Many To Many
Has Many Through

Polymorphic Relations
Many To Many Polymorphic Relations

Defining Relationships
Eloquent relationships are defined as functions on your Eloquent model classes. Since, like
Eloquent models themselves, relationships also serve as powerful query builders, defining
relationships as functions provides powerful method chaining and querying capabilities. For
example:

$user->posts()->where('active', 1)->get();

One To One
A one-to-one relationship is a very basic relation. For example, a User model might be asso-
ciated with one Phone. To define this relationship, we place a phone method on the User
model. The phone method should return the results of the hasOne method on the base Elo-
quent model class:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class User extends Model
{
 public function phone()
 {
 return $this->hasOne('App\Phone');
 }
}

The first argument passed to the hasOne method is the name of the related model. Once
the relationship is defined, we may retrieve the related record using Eloquent's dynamic
properties. Dynamic properties allow you to access relationship functions as if they were
properties defined on the model:

$phone = User::find(1)->phone;

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

126 Prepared by: Prof. Hardik Chavda

Eloquent assumes the foreign key of the relationship based on the model name. In this case,
the Phone model is automatically assumed to have a user_id foreign key. If you wish to
override this convention, you may pass a second argument to the hasOne method:

return $this->hasOne('App\Phone', 'foreign_key');

Additionally, Eloquent assumes that the foreign key should have a value matching the id (or
the custom $primaryKey) column of the parent. In other words, Eloquent will look for the
value of the user's id column in the user_id column of the Phone record. If you would like
the relationship to use a value other than id, you may pass a third argument to the hasOne
method specifying your custom key:

return $this->hasOne('App\Phone', 'foreign_key', 'local_key');

One To Many
A "one-to-many" relationship is used to define relationships where a single model owns any
amount of other models. For example, a blog post may have an infinite number of com-
ments. Like all other Eloquent relationships, one-to-many relationships are defined by plac-
ing a function on your Eloquent model:

<?php
 namespace App;
 use Illuminate\Database\Eloquent\Model;

class Post extends Model
{
 /**
 * Get the comments for the blog post.
 */
 public function comments()
 {
 return $this->hasMany('App\Comment');
 }
}

Remember, Eloquent will automatically determine the proper foreign key column on the
Comment model. By convention, Eloquent will take the "snake case" name of the owning
model and suffix it with _id. So, for this example, Eloquent will assume the foreign key on
the Comment model is post_id.

Once the relationship has been defined, we can access the collection of comments by ac-
cessing the comments property. Remember, since Eloquent provides "dynamic properties",
we can access relationship functions as if they were defined as properties on the model:

$comments = App\Post::find(1)->comments;

foreach ($comments as $comment) {
 //
}

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

127 Prepared by: Prof. Hardik Chavda

Of course, since all relationships also serve as query builders, you can add further con-
straints to which comments are retrieved by calling the comments method and continuing
to chain conditions onto the query:

$comments = App\Post::find(1)->comments()->where('title', 'foo')->first();

Like the hasOne method, you may also override the foreign and local keys by passing addi-
tional arguments to the hasMany method:

return $this->hasMany('App\Comment', 'foreign_key');

return $this->hasMany('App\Comment', 'foreign_key', 'local_key');

Many To Many

Many-to-many relations are slightly more complicated than hasOne and hasMany relation-
ships. An example of such a relationship is a user with many roles, where the roles are also
shared by other users. For example, many users may have the role of "Admin". To define
this relationship, three database tables are needed: users, roles, and role_user. The
role_user table is derived from the alphabetical order of the related model names, and con-
tains the user_id and role_id columns.

Many-to-many relationships are defined by writing a method that calls the belongsToMany
method on the base Eloquent class. For example, let's define the roles method on our User
model:

<?php
 namespace App;

use Illuminate\Database\Eloquent\Model;

class User extends Model
{
 /**
 * The roles that belong to the user.
 */
 public function roles()
 {
 return $this->belongsToMany('App\Role');
 }
}

Once the relationship is defined, you may access the user's roles using the roles dynamic
property:
$user = App\User::find(1);

foreach ($user->roles as $role) {
 //
}

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

128 Prepared by: Prof. Hardik Chavda

Of course, like all other relationship types, you may call the roles method to continue chain-
ing query constraints onto the relationship:

$roles = App\User::find(1)->roles()->orderBy('name')->get();

As mentioned previously, to determine the table name of the relationship's joining table,
Eloquent will join the two related model names in alphabetical order. However, you are free
to override this convention. You may do so by passing a second argument to the be-
longsToMany method:

return $this->belongsToMany('App\Role', 'role_user');

In addition to customizing the name of the joining table, you may also customize the column
names of the keys on the table by passing additional arguments to the belongsToMany
method. The third argument is the foreign key name of the model on which you are defining
the relationship, while the fourth argument is the foreign key name of the model that you
are joining to:

return $this->belongsToMany('App\Role', 'role_user', 'user_id', 'role_id');

Collections
All multi-result sets returned by Eloquent are instances of the Illumi-
nate\Database\Eloquent\Collection object, including results retrieved via the get method or
accessed via a relationship. The Eloquent collection object extends the Laravel base collec-
tion, so it naturally inherits dozens of methods used to fluently work with the underlying
array of Eloquent models.

Of course, all collections also serve as iterators, allowing you to loop over them as if they
were simple PHP arrays:

$users = App\User::where('active', 1)->get();

foreach ($users as $user) {
 echo $user->name;
}

However, collections are much more powerful than arrays and expose a variety of map /
reduce operations that may be chained using an intuitive interface. For example, let's re-
move all inactive models and gather the first name for each remaining user:

$users = App\User::where('active', 1)->get();

$names = $users->reject(function ($user) {
 return $user->active === false;
})
->map(function ($user) {
 return $user->name;
});

UNIT-5 Eloquent ORM and API
 Eloquent ORM Models

129 Prepared by: Prof. Hardik Chavda

The Base Collection
All Eloquent collections extend the base Laravel collection object; therefore, they inherit all
of the powerful methods provided by the base collection class:

all, average, avg, chunk, collapse, combine, contains, count, diff, diffKeys, each, every, ex-
cept, filter, first, flatMap, flatten, flip, forget, forPage, get, groupBy, has, implode, inter-
sect, isEmpty, keyBy, keys, last, map, max, median, merge, min, mode, only, pipe, pluck,
pop, prepend, pull, push, put, random, reduce, reject, reverse, search, shift, shuffle, slice,
sort, sortBy, sortByDesc, splice, sum, take, toArray, toJson, transform, union, unique, val-
ues, where, whereLoose, whereIn, whereInLoose, zip,

Defining A Mutator
To define a mutator, define a setFooAttribute method on your model where Foo is the
"studly" cased name of the column you wish to access. So, again, let's define a mutator for
the first_name attribute. This mutator will be automatically called when we attempt to set
the value of the first_name attribute on the model:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class User extends Model{
 public function setFirstNameAttribute($value) {
 $this->attributes['first_name'] = strtolower($value);
 }
}

The mutator will receive the value that is being set on the attribute, allowing you to manipu-
late the value and set the manipulated value on the Eloquent model's internal $attributes
property. So, for example, if we attempt to set the first_name attribute to Sally:

$user = App\User::find(1);

$user->first_name = 'Sally';

In this example, the setFirstNameAttribute function will be called with the value Sally. The
mutator will then apply the strtolower function to the name and set its value in the internal
$attributes array.

UNIT-5 Eloquent ORM and API
 API Resources

130 Prepared by: Prof. Hardik Chavda

API Resources Introduction
When building an API, you may need a transformation layer that sits between your Eloquent
models and the JSON responses that are actually returned to your application's users.
Laravel's resource classes allow you to expressively and easily transform your models and
model collections into JSON.

Generating Resources
To generate a resource class, you may use the make:resource Artisan command. By default,
resources will be placed in the app/Http/Resources directory of your application. Resources
extend the Illuminate\Http\Resources\Json\JsonResource class:

php artisan make:resource User

Resource Collections
In addition to generating resources that transform individual models, you may generate re-
sources that are responsible for transforming collections of models. This allows your re-
sponse to include links and other meta information that is relevant to an entire collection of
a given resource.

To create a resource collection, you should use the --collection flag when creating the re-
source. Or, including the word Collection in the resource name will indicate to Laravel that it
should create a collection resource. Collection resources extend the Illumi-
nate\Http\Resources\Json\ResourceCollection class:

php artisan make:resource Users --collection

php artisan make:resource UserCollection

Writing Resources

In essence, resources are simple. They only need to transform a given model into an array.
So, each resource contains a toArray method which translates your model's attributes into
an API friendly array that can be returned to your users:

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\JsonResource;

class User extends JsonResource
{
 /**
 * Transform the resource into an array.
 *
 * @param \Illuminate\Http\Request $request
 * @return array

UNIT-5 Eloquent ORM and API
 API Resources

131 Prepared by: Prof. Hardik Chavda

 */
 public function toArray($request)
 {
 return [
 'id' => $this->id,
 'name' => $this->name,
 'email' => $this->email,
 'created_at' => $this->created_at,
 'updated_at' => $this->updated_at,
];
 }
}

Once a resource has been defined, it may be returned directly from a route or controller:

use App\Http\Resources\User as UserResource;
use App\User;

Route::get('/user', function () {
 return new UserResource(User::find(1));
});

UNIT-5 Eloquent ORM and API
 API Authentication

132 Prepared by: Prof. Hardik Chavda

Introduction
Laravel Passport provides a full OAuth2 server implementation for your Laravel application
in a matter of minutes. Passport is built on top of the League OAuth2 server that is main-
tained by Andy Millington and Simon Hamp.

Passport Or Sanctum?
Before getting started, you may wish to determine if your application would be better
served by Laravel Passport or Laravel Sanctum. If your application absolutely needs to sup-
port OAuth2, then you should use Laravel Passport.

However, if you are attempting to authenticate a single-page application, mobile applica-
tion, or issue API tokens, you should use Laravel Sanctum. Laravel Sanctum does not support
OAuth2; however, it provides a much simpler API authentication development experience.

Installation
To get started, install Passport via the Composer package manager:

composer require laravel/passport

Passport's service provider registers its own database migration directory, so you should mi-
grate your database after installing the package. The Passport migrations will create the ta-
bles your application needs to store OAuth2 clients and access tokens:

php artisan migrate

Next, you should execute the passport:install Artisan command. This command will create
the encryption keys needed to generate secure access tokens. In addition, the command will
create "personal access" and "password grant" clients which will be used to generate access
tokens:

php artisan passport:install

After running the passport:install command, add the Laravel\Passport\HasApiTokens trait to
your App\Models\User model. This trait will provide a few helper methods to your model
which allow you to inspect the authenticated user's token and scopes. If your model is al-
ready using the Laravel\Sanctum\HasApiTokens trait, you may remove that trait:
<?php
 namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Foundation\Auth\User as Authenticatable;
use Illuminate\Notifications\Notifiable;
// use Laravel\Sanctum\HasApiTokens; // Comment this
use Laravel\Passport\HasApiTokens; // Add this

class User extends Authenticatable{
 use HasApiTokens, HasFactory, Notifiable;
}

UNIT-5 Eloquent ORM and API
 API Authentication

133 Prepared by: Prof. Hardik Chavda

Finally, in your application's config/auth.php configuration file, you should define an api au-
thentication guard and set the driver option to passport. This will instruct your application
to use Passport's TokenGuard when authenticating incoming API requests:

'guards' => [
 'web' => [
 'driver' => 'session',
 'provider' => 'users',
],

// Add Below Code

 'api' => [
 'driver' => 'passport',
 'provider' => 'users',
],
],

