
UNIT- 2 Introduction to JSX & REACT JS

42 Prepared By: Prof. Hardik Chavda

Introduction
What is ReactJS?

React Introduction
ReactJS is a declarative, efficient, and flexible JavaScript library for building reusable UI
components. It is an open-source, component-based front-end library responsible only for
the view layer of the application. It was created by Jordan Walke, who was a software engi-
neer at Facebook. It was initially developed and maintained by Facebook and was later used
in its products like WhatsApp & Instagram. Facebook developed ReactJS in 2011 in its news-
feed section, but it was released to the public in the month of May 2013.

Today, most of the websites are built using MVC (model view controller) architecture. In
MVC architecture, React is the 'V' which stands for view, whereas the architecture is provid-
ed by the Redux or Flux.

A ReactJS application is made up of multiple components, each component responsible for
outputting a small, reusable piece of HTML code. The components are the heart of all React
applications. These Components can be nested with other components to allow complex
applications to be built of simple building blocks. ReactJS uses virtual DOM based mecha-
nism to fill data in HTML DOM. The virtual DOM works fast as it only changes individual
DOM elements instead of reloading complete DOM every time.

To create React app, we write React components that correspond to various elements. We
organize these components inside higher level components which define the application
structure. For example, we take a form that consists of many elements like input fields, la-
bels, or buttons. We can write each element of the form as React components, and then we
combine it into a higher-level component, i.e., the form component itself. The form compo-
nents would specify the structure of the form along with elements inside of it.

Why learn ReactJS?
Today, many JavaScript frameworks are available in the market (like angular, node), but still,
React came into the market and gained popularity amongst them. The previous frameworks
follow the traditional data flow structure, which uses the DOM (Document Object Model).
DOM is an object which is created by the browser each time a web page is loaded. It dynam-
ically adds or removes the data at the back end and when any modifications were done,
then each time a new DOM is created for the same page. This repeated creation of DOM
makes unnecessary memory wastage and reduces the performance of the application.

Therefore, a new technology ReactJS framework invented which remove this drawback. Re-
actJS allows you to divide your entire application into various components. ReactJS still used
the same traditional data flow, but it is not directly operating on the browser's Document
Object Model (DOM) immediately; instead, it operates on a virtual DOM. It means rather
than manipulating the document in a browser after changes to our data, it resolves changes
on a DOM built and run entirely in memory. After the virtual DOM has been updated, React
determines what changes made to the actual browser's DOM. The React Virtual DOM exists
entirely in memory and is a representation of the web browser's DOM. Due to this, when we
write a React component, we did not write directly to the DOM; instead, we are writing vir-
tual components that react will turn into the DOM.

UNIT- 2 Introduction to JSX & REACT JS

43 Prepared By: Prof. Hardik Chavda

React Version
A complete release history for React is given below. You can also see the full documentation
for recent releases on GitHub

SN Version Release
Date

Significant Changes

1. 0.3.0 29/05/2013 Initial Public Release

2. 0.4.0 20/07/2013 Support for comment nodes <div>{/* */}</div>, Improved serv-
er-side rendering APIs, Removed React.autoBind, Support for
the key prop, Improvements to forms, Fixed bugs.

3. 0.5.0 20/10/2013 Improve Memory usage, Support for Selection and Composition
events, Support for getInitialState and getDefaultProps in mix-
ins, Added React.version and React.isValidClass, Improved com-
patibility for Windows.

4. 0.8.0 20/12/2013 Added support for rows & cols, defer & async, loop for <audio>
& <video>, autoCorrect attributes. Added onContextMenu
events, Upgraded jstransform and esprima-fb tools, Upgraded
browserify.

5. 0.9.0 20/02/2014 Added support for crossOrigin, download and hrefLang, media-
Group and muted, sandbox, seamless, and srcDoc, scope attrib-
utes, Added any, arrayOf, component, oneOfType, renderable,
shape to React.PropTypes, Added support for onMouseOver and
onMouseOut event, Added support for onLoad and onError on
 elements.

6. 0.10.0 21-03-2014 Added support for srcSet and textAnchor attributes, add update
function for immutable data, Ensure all void elements don't in-
sert a closing tag.

7. 0.11.0 17/07/2014 Improved SVG support, Normalized e.view event, Update $apply
command, Added support for namespaces, Added new trans-
formWithDetails API, includes pre-built packages under dist/,
MyComponent() now returns a descriptor, not an instance.

8. 0.12.0 21/11/2014 Added new features Spread operator ({...}) introduced to depre-
cate this.transferPropsTo, Added support for acceptCharset,
classID, manifest HTML attributes, Re-
act.addons.batchedUpdates added to API, @jsx React.DOM no
longer required, Fixed issues with CSS Transitions.

9. 0.13.0 10/03/2015 Deprecated patterns that warned in 0.12 no longer work, ref
resolution order has changed, Removed properties
this._pendingState and this._rootNodeID, Support ES6 classes,
Added API React.findDOMNode(component), Support for itera-
tors and immutable-js sequences, Added new features Re-
act.addons.createFragment, deprecated React.addons.classSet.

10. 0.14.1 29/10/2015 Added support for srcLang, default, kind attributes, and color
attribute, Ensured legacy .props access on DOM nodes, Fixed
scryRenderedDOMComponentsWithClass, Added react-dom.js.

UNIT- 2 Introduction to JSX & REACT JS

44 Prepared By: Prof. Hardik Chavda

11. 15.0.0 07/04/2016 Initial render now uses document.createElement instead of
generating HTML, No more extra s, Improved SVG sup-
port, ReactPerf.getLastMeasurements() is opaque, New depre-
cations introduced with a warning, Fixed multiple small memory
leaks, React DOM now supports the cite and profile HTML at-
tributes and cssFloat, gridRow and gridColumn CSS properties.

12. 15.1.0 20/05/2016 Fix a batching bug, Ensure use of the latest object-assign, Fix re-
gression, Remove use of merge utility, Renamed some modules.

13. 15.2.0 01/07/2016 Include component stack information, Stop validating props at
mount time, Add React.PropTyjpes.symbol, Add onLoad han-
dling to <link> and onError handling to <source> element, Add
isRunning() API, Fix performance regression.

14. 15.3.0 30/07/2016 Add React.PureComponent, Fix issue with nested server render-
ing, Add xmlns, xmlnsXlink to support SVG attributes and refer-
rerPolicy to HTML attributes, updates React Perf Add-on, Fixed
issue with ref.

15. 15.3.1 19/08/2016 Improve performance of development builds, Cleanup internal
hooks, Upgrade fbjs, Improve startup time of React, Fix memory
leak in server rendering, fix React Test Renderer, Change
trackedTouchCount invariant into a console.error.

16. 15.4.0 16/11/2016 React package and browser build no longer includes React DOM,
Improved development performance, Fixed occasional test fail-
ures, update batchedUpdates API, React Perf, and React-
TestRenderer.create().

17. 15.4.1 23/11/2016 Restructure variable assignment, Fixed event handling, Fixed
compatibility of browser build with AMD environments.

18. 15.4.2 06/01/2017 Fixed build issues, Added missing package dependencies, Im-
proved error messages.

19. 15.5.0 07/04/2017 Added react-dom/test-utils, removed peerDependencies, Fixed
issue with Closure Compiler, Added a deprecation warning for
React.createClass and React.PropTypes, Fixed Chrome bug.

20. 15.5.4 11/04/2017 Fix compatibility with Enzyme by exposing batchedUpdates on
shallow renderer, Update version of prop-types, Fix react-
addons-create-fragment package to include loose-envify trans-
form.

21. 15.6.0 13/06/2017 Add support for CSS variables in style attribute and Grid style
properties, Fix AMD support for addons depending on react,
remove unnecessary dependency, Add a deprecation warning
for React.createClass and React.DOM factory helpers.

22. 16.0.0 26/09/2017 Improvd error handling with introduction of "error boundaries",
React DOM allows passing non-standard attributes, Minor
changes to setState behavior, remove react-with-addons.js
build, Add React.createClass as create-react-class, Re-
act.PropTypes as prop-types, React.DOM as react-dom-factories,
changes to the behavior of scheduling and lifecycle methods.

UNIT- 2 Introduction to JSX & REACT JS

45 Prepared By: Prof. Hardik Chavda

23. 16.1.0 9/11/2017 Discontinuing Bower Releases, Fix an accidental extra global var-
iable in the UMD builds, Fix onMouseEnter and onMouseLeave
firing, Fix <textarea> placeholder, Remove unused code, Add a
missing package.json dependency, Add support for React Dev-
Tools.

24. 16.3.0 29/03/2018 Add a new officially supported context API, Add new pack-
agePrevent an infinite loop when attempting to render portals
with SSR, Fix an issue with this.state, Fix an IE/Edge issue.

25. 16.3.1 03/04/2018 Prefix private API, Fix performance regression and error handling
bugs in development mode, Add peer dependency, Fix a false
positive warning in IE11 when using Fragment.

26. 16.3.2 16/04/2018 Fix an IE crash, Fix labels in User Timing measurements, Add a
UMD build, Improve performance of unstable_observedBits API
with nesting.

27. 16.4.0 24/05/2018 Add support for Pointer Events specification, Add the ability to
specify propTypes, Fix reading context, Fix the getDerivedState-
FromProps() support, Fix a testInstance.parent crash, Add Re-
act.unstable_Profiler component for measuring performance,
Change internal event names.

28. 16.5.0 05/09/2018 Add support for React DevTools Profiler, Handle errors in more
edge cases gracefully, Add react-dom/profiling, Add onAuxClick
event for browsers, Add movementX and movementY fields to
mouse events, Add tangentialPressure and twist fields to pointer
event.

29. 16.6.0 23/10/2018 Add support for contextType, Support priority levels, continua-
tions, and wrapped callbacks, Improve the fallback mechanism,
Fix gray overlay on iOS Safari, Add React.lazy() for code splitting
components.

30. 16.7.0 20/12/2018 Fix performance of React.lazy for lazily-loaded components,
Clear fields on unmount to avoid memory leaks, Fix bug with
SSR, Fix a performance regression.

31. 16.8.0 06/02/2019 Add Hooks, Add ReactTestRenderer.act() and ReactTestU-
tils.act() for batching updates, Support synchronous thenables
passed to React.lazy(), Improve useReducer Hook lazy initializa-
tion API.

32. 16.8.6 27/03/2019 Fix an incorrect bailout in useReducer(), Fix iframe warnings in
Safari DevTools, Warn if contextType is set to Context.Consumer
instead of Context, Warn if contextType is set to invalid values.

UNIT- 2 Introduction to JSX & REACT JS

46 Prepared By: Prof. Hardik Chavda

Installation or Setup

Node JS Installation
Step-1: Downloading the Node.js ‘.msi’ installer.
The first step to install Node.js on windows is to download the installer. Visit the official
Node.js website i.e) https://nodejs.org/en/download/ and download the .msi file according
to your system environment (32-bit & 64-bit). An MSI installer will be downloaded on your
system.

Step-2: Running the Node.js installer.
Now you need to install the node.js installer on your PC. You need to follow the following
steps for the Node.js to be installed:-

• Double click on the .msi installer.

The Node.js Setup wizard will open.
• Welcome To Node.js Setup Wizard.

Select “Next”

https://nodejs.org/en/download/

UNIT- 2 Introduction to JSX & REACT JS

47 Prepared By: Prof. Hardik Chavda

• After clicking “Next”, End-User License Agreement (EULA) will open. Check “I accept
the terms in the License Agreement” Select “Next”

• Destination Folder Set the Destination Folder where you want to install Node.js & Se-
lect “Next”

UNIT- 2 Introduction to JSX & REACT JS

48 Prepared By: Prof. Hardik Chavda

• Custom Setup Select “Next”

• Ready to Install Node.js. Select “Install”

NOTE :
A prompt saying – “This step requires administrative privileges” will appear.
Authenticate the prompt as an “Administrator”

• Installing Node.js.
Do not close or cancel the installer until the install is complete

UNIT- 2 Introduction to JSX & REACT JS

49 Prepared By: Prof. Hardik Chavda

• Complete the Node.js Setup Wizard. Click “Finish”

To check that node.js was completely installed on your system or not, you can run the fol-
lowing command in your command prompt or Windows Powershell and test it: -

C:\Users\HardikCHavda> node -v

Next, we will learn how to set up an environment for the successful development of ReactJS
application.

Ways to install ReactJS
There are two ways to set up an environment for successful ReactJS application. They are
given below.

Using the npm command
Using the create-react-app command

1. Using the npm command
2. Using the npx command

UNIT- 2 Introduction to JSX & REACT JS

50 Prepared By: Prof. Hardik Chavda

NPM (Node Package Manager) is a package manager, but it’s not very good at executing
(running) packages.

NPX (Node Package Execute) is a package-runner CLI tool that is built-in to NPM (since NPM
version 5.2).

You’ll notice that the official documentation for ReactJS recommends you to use this NPX
command to install and run create-react-app:

npx create-react-app project-name

The reason is that NPX makes sure that you run the React application with the latest ver-
sions of the packages — NPM doesn’t.

This is practical because create-react-app is updated frequently — and it's generally rec-
ommended to use the latest package versions.

If you install create-react-app globally with npm install, you’ll have to manually update
your project every time packages/dependencies get updated. NPX does it for you automati-
cally.

NodeJS and NPM are the platforms need to develop any ReactJS application. You can install
NodeJS from https://nodejs.org/en/

You can install React using npm package manager by using the below command. There is no
need to worry about the complexity of React installation. The create-react-app npm package
will take care of it.

D:\HardikChavda>npm install -g create-react-app

UNIT- 2 Introduction to JSX & REACT JS

51 Prepared By: Prof. Hardik Chavda

After the installation of React, you can create a new react project using create-react-app
command. Here, I choose myapp name for my project.

D:\HardikChavda>cd myapp
D:\HardikChavda\myapp>

NOTE: You can combine the above two steps in a single command using npx. The npx is a
package runner tool that comes with npm 5.2 and above version.

D:\HardikChavda>npx create-react-app myapp

The above command will install the react and create a new project with the name myapp.
This app contains the following sub-folders and files by default which can be shown in the
below image.

Now, to get started, open the src folder and make changes in your desired file. By default,
the src folder contain the following files shown in below image.

For example, I will open App.js and make changes in its code which are shown below.
App.js

import React from 'react';
import logo from './logo.svg';
import './App.css';

function App() {
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Welcome To Geetanjali College.
 <p>To get started, edit src/App.js and save to reload.</p>
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
);
}
export default App;

UNIT- 2 Introduction to JSX & REACT JS

52 Prepared By: Prof. Hardik Chavda

Running the Server
After completing the installation process, you can start the server by running the following
command.

D:\HardikChavda\myapp>npm start

It will show the port number which we need to open in the browser.

NPM is a package manager which starts the server and access the application at default
server http://localhost:3000. Now, we will get the following screen.

Next, open the project on Code editor. Here, I am using Visual Studio Code. Our project's
default structure looks like as below image.

UNIT- 2 Introduction to JSX & REACT JS

53 Prepared By: Prof. Hardik Chavda

In React application, there are several files and folders in the root directory. Some of them
are as follows:

node_modules: It contains the React library and any other third party libraries needed.

public: It holds the public assets of the application. It contains the index.html where React
will mount the application by default on the <div id="root"></div> element.

src: It contains the App.css, App.js, App.test.js, index.css, index.js, etc. files. Here, the In-
dex.js file always responsible for displaying the output screen in React.

package-lock.json: It is generated automatically for any operations where npm package
modifies either the node_modules tree or package.json. It cannot be published. It will be
ignored if it finds any other place rather than the top-level package.

package.json: It holds various metadata required for the project. It gives information to
npm, which allows to identify the project as well as handle the project’s dependencies.

README.md: It provides the documentation to read about React topics.

Next, if we want to make the project for the production mode, type the following command.
This command will generate the production build, which is best optimized.

D:\HardikChavda\myapp>npm run build

For the project to build, these files must exist with exact
filenames:

public/index.html is the page template;
src/index.js is the JavaScript entry point.
You can delete or rename the other files.

You may create subdirectories inside src. For faster re-
builds, only files inside src are processed by webpack. You
need to put any JS and CSS files inside src, otherwise
webpack won’t see them.

You can, however, create more top-level directories. They
will not be included in the production build so you can use
them for things like documentation.

UNIT- 2 Introduction to JSX & REACT JS

54 Prepared By: Prof. Hardik Chavda

Components:
Earlier, the developers write more than thousands of lines of code for developing a single page ap-
plication. These applications follow the traditional DOM structure, and making changes in them was
a very challenging task. If any mistake found, it manually searches the entire application and update
accordingly. The component-based approach was introduced to overcome an issue. In this approach,
the entire application is divided into a small logical group of code, which is known as components.

Every React component have their own structure, methods as well as APIs. They can be re-
usable as per your need. For better understanding, consider the entire UI as a tree. Here,
the root is the starting component, and each of the other pieces becomes branches, which
are further divided into sub-branches.

Creating components
A Component is considered as the core building blocks of a React application. It makes the
task of building UIs much easier. Each component exists in the same space, but they work
independently from one another and merge all in a parent component, which will be the
final UI of your application.

Basic components,
Higher order components are used when you want to share logic across several components
regardless of how different they render.

import logo from './logo.svg';
import './App.css';

function App() { //Component
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
);
}
export default App;

UNIT- 2 Introduction to JSX & REACT JS

55 Prepared By: Prof. Hardik Chavda

Given the following file: index.JS
import React from 'react';
import ReactDOM from 'react-dom/client';
import App from './App'; //Getting Component

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(
 <App /> //Using Component
);

Nesting components,
A lot of the power of ReactJS is its ability to allow nesting of components. Take the following
two components.
Header.js is a component.

function Header() {
 return (
 <Header>This is Header</Header>
)
}
export default Header

Header is imported and added in App.js

import Header from "./Header";
function App() {
 return (
 <Header />
);
}
export default App;

App.js is imported into index.js

import React from 'react';
import ReactDOM from 'react-dom/client';
import App from './App';

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(
 <App />
);

UNIT- 2 Introduction to JSX & REACT JS

56 Prepared By: Prof. Hardik Chavda

Functional Component:
In React, function components are a way to write components that only contain a render
method and don't have their own state. They are simply JavaScript functions that may or
may not receive data as parameters. We can create a function that takes props(properties)
as input and returns what should be rendered. A valid functional component can be shown
in the below example.

function WelcomeMessage() {
 return <h1>Welcome to the New Component</h1>;
}

The functional component is also known as a stateless component because they do not hold
or manage state. It can be explained in the below example.

Class Component
Class components are more complex than functional components. It requires you to extend
from React. Component and create a render function which returns a React element. You
can pass data from one class to other class components. You can create a class by defining a
class that extends Component and has a render function. Valid class component is shown in
the below example.

class MyComponent extends React.Component {
 render() {
 return <div>This is main component. </div>
 }
}

The class component is also known as a stateful component because they can hold or man-
age local state. It can be explained in the below example.

In this example, we are creating the list of unordered elements, where we will dynamically
insert StudentName for every object from the data array. Here, we are using ES6 arrow syn-
tax (=>) which looks much cleaner than the old JavaScript syntax. It helps us to create our
elements with fewer lines of code. It is especially useful when we need to create a list with a
lot of items.

import React, { Component } from 'react';
class App extends React.Component {
 constructor() {
 super();
 this.state = {
 data:
 [{ "name": "Abhishek" }, { "name": "Saharsh" }, { "name": "Ajay" }]
 }
 }
 render() {
 return (
 <div>
 <StudentName />

 {this.state.data.map((item) => <List data={item} />)}

UNIT- 2 Introduction to JSX & REACT JS

57 Prepared By: Prof. Hardik Chavda

 </div>
);
 }
}
class StudentName extends React.Component {
 render() {
 return (
 <div>
 <h1>Student Name Detail</h1>
 </div>
);
 }
}
class List extends React.Component {
 render() {
 return (

 {this.props.data.name}

);
 }
}
export default App;

UNIT- 2 Introduction to JSX & REACT JS

58 Prepared By: Prof. Hardik Chavda

Introduction to JSX:
As we have already seen that, all of the React components have a render function. The ren-
der function specifies the HTML output of a React component. JSX (JavaScript Extension), is
a React extension which allows writing JavaScript code that looks like HTML. In other words,
JSX is an HTML-like syntax used by React that extends ECMAScript so that HTML-like syntax
can co-exist with JavaScript/React code. The syntax is used by preprocessors (i.e., transpilers
like babel) to transform HTML-like syntax into standard JavaScript objects that a JavaScript
engine will parse.

JSX provides you to write HTML/XML-like structures (e.g., DOM-like tree structures) in the
same file where you write JavaScript code, then preprocessor will transform these expres-
sions into actual JavaScript code. Just like XML/HTML, JSX tags have a tag name, attributes,
and children.

Here, we will write JSX syntax in JSX file and see the corresponding JavaScript code which
transforms by preprocessor(babel).

JSX File
<div>Hello Geetanjali</div>

Corresponding Output

React.createElement("div", null, "Hello Geetanjali");

The above line creates a react element and passing three arguments inside where the first is
the name of the element which is div, second is the attributes passed in the div tag, and last
is the content you pass which is the "Hello Geetanjali."

Why use JSX?
It is faster than regular JavaScript because it performs optimization while translating the
code to JavaScript.
Instead of separating technologies by putting markup and logic in separate files, React uses
components that contain both. We will learn components in a further section.
It is type-safe, and most of the errors can be found at compilation time.
It makes easier to create templates.

Nested Elements in JSX
To use more than one element, you need to wrap it with one container element. Here, we
use div as a container element which has three nested elements inside it.

import React, { Component } from 'react';
class App extends Component {
 render() {
 return (
 <div>
 <h1>Geetanjali</h1>
 <h2>Hardik Chavda</h2>
 </div>
);

UNIT- 2 Introduction to JSX & REACT JS

59 Prepared By: Prof. Hardik Chavda

 }
}
export default App;

JSX Attributes
JSX use attributes with the HTML elements same as regular HTML. JSX uses camelcase nam-
ing convention for attributes rather than standard naming convention of HTML such as a
class in HTML becomes className in JSX because the class is the reserved keyword in JavaS-
cript. We can also use our own custom attributes in JSX. For custom attributes, we need to
use data- prefix. In the below example, we have used a custom attribute data-
demoAttribute as an attribute for the <p> tag.

In JSX, we can specify attribute values in two ways:

1. As String Literals: We can specify the values of attributes in double quotes:
var element = <h2 className = "firstAttribute">Hello Geetanjali</h2>;
Example

import React, { Component } from 'react';
class App extends Component {
 render() {
 return (
 <div>
 <h1 className="hello" >Geetanjali</h1>
 <p data-demoAttribute="demo">Hardik Chavda </p>
 </div>
);
 }
}
export default App;
Output:
Geetanjali
Hardik Chavda

2. As Expressions: We can specify the values of attributes as expressions using curly braces
{}:
var element = <h2 className = {varName}>Hello Geetanjali</h2>;
Example

import React, { Component } from 'react';
class App extends Component {
 render() {
 return (
 <div>
 <h1 className="hello" >{25 + 20}</h1>
 </div>
);
 }
}

UNIT- 2 Introduction to JSX & REACT JS

60 Prepared By: Prof. Hardik Chavda

JSX Comments
JSX allows us to use comments that begin with /* and ends with */ and wrapping them in
curly braces {} just like in the case of JSX expressions. Below example shows how to use
comments in JSX.

Example

import React, { Component } from 'react';
class App extends Component {
 render() {
 return (
 <div>
 <h1 className="hello" >Hello Geetanjali</h1>
 {/* This is a comment in JSX */}
 </div>
);
 }
}
export default App;

JSX Styling
React always recommends to use inline styles. To set inline styles, you need to use
camelCase syntax. React automatically allows appending px after the number value on spe-
cific elements. The following example shows how to use styling in the element.

Example

import React, { Component } from 'react';
class App extends Component {
 render() {
 var myStyle = {
 fontSize: 80,
 fontFamily: 'Courier',
 color: '#003300'
 }
 return (
 <div>
 <h1 style={myStyle}>www.geetanjali.com</h1>
 </div>
);
 }
}
export default App

UNIT- 2 Introduction to JSX & REACT JS

61 Prepared By: Prof. Hardik Chavda

ReactJS JSX
NOTE: JSX cannot allow to use if-else statements. Instead of it, you can use conditional (ter-
nary) expressions. It can be seen in the following example.

Example

import React, { Component } from 'react';
class App extends Component {
 render() {
 var i = 5;
 return (
 <div>
 <h1>{i == 1 ? 'True!' : 'False!'}</h1>
 </div>
);
 }
}
export default App;

UNIT- 2 Introduction to JSX & REACT JS

62 Prepared By: Prof. Hardik Chavda

Props: ReactJS Props,
Props stand for "Properties." They are read-only components. It is an object which stores
the value of attributes of a tag and work similar to the HTML attributes. It gives a way to
pass data from one component to other components. It is similar to function arguments.
Props are passed to the component in the same way as arguments passed in a function.

Props are immutable so we cannot modify the props from inside the component. Inside the
components, we can add attributes called props. These attributes are available in the com-
ponent as this.props and can be used to render dynamic data in our render method.

When you need immutable data in the component, you have to add props to re-
actDom.render() method in the main.js file of your ReactJS project and used it inside the
component in which you need.

App.js

import React, { Component } from 'react';
class App extends React.Component {
 render() {
 return (
 <div>
 <h1> Welcome to {this.props.name} </h1>
 <p> <h4> Geetanjali is one of the best College in India. </h4> </p>
 </div>
);
 }
}
export default App;

Main.js

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App.js';

ReactDOM.render(
 <App name="Geetanjali!!" />, document.getElementById('app')
);

UNIT- 2 Introduction to JSX & REACT JS

63 Prepared By: Prof. Hardik Chavda

Default Props
It is not necessary to always add props in the reactDom.render() element. You can also set
default props directly on the component constructor.

App.js

import React, { Component } from 'react';
class App extends React.Component {
 render() {
 return (
 <div>
 <h1>Default Props Example</h1>
 <h3>Welcome to {this.props.name}</h3>
 <p>It is one of the best College in India.</p>
 </div>
);
 }
}
App.defaultProps = {
 name: "Geetanjali"
}
export default App;

Main.js

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App.js';

ReactDOM.render(<App />, document.getElementById('app'));

UNIT- 2 Introduction to JSX & REACT JS

64 Prepared By: Prof. Hardik Chavda

React State,
Components, we got to know that React Components can be broadly classified into Func-
tional and Class Components. It is also seen that Functional Components are faster and
much simpler than Class Components. The primary difference between the two is the avail-
ability of the State.

What is State?
The state is an instance of React Component Class can be defined as an object of a set of
observable properties that control the behavior of the component. In other words, the State
of a component is an object that holds some information that may change over the lifetime
of the component. For example, let us think of the clock that we created in this article, we
were calling the render() method every second explicitly, but React provides a better way to
achieve the same result and that is by using State, storing the value of time as a member of
the component’s state. We will look into this more elaborately later in the article.

Difference of Props and State.
We have already learned about Props and we got to know that Props are also objects that
hold information to control the behavior of that particular component, sounds familiar to
State indeed but props and states are nowhere near be same. Let us differentiate the two.
Props are immutable i.e. once set the props cannot be changed, while State is an observable
object that is to be used to hold data that may change over time and to control the behavior
after each change.

States can be used in Class Components, Functional components with the use of React
Hooks (useState and other methods) while Props don’t have this limitation.

While Props are set by the parent component, State is generally updated by event handlers.
It can be implemented using State where the probable values of the State can be either light
or dark and upon selection, the IDE changes its color.

Now we have learned the basics of State and are able to differentiate it from Props. We
have also seen a few places where we can use State now all that is left is to know about the
basic conventions of using the React State before implementing one for ourselves.

Conventions of Using State in React:

State of a component should prevail throughout the lifetime, thus we must first have some
initial state, to do so we should define the State in the constructor of the component’s class.
To define a state of any Class we can use the sample format below.

class MyClass extends React.Component
{
 constructor(props){
 super(props);
 this.state = { attribute: "value" };
 }
}

UNIT- 2 Introduction to JSX & REACT JS

65 Prepared By: Prof. Hardik Chavda

State should never be updated explicitly. React uses an observable object as the state that
observes what changes are made to the state and helps the component behave accordingly.
For example, if we update the state of any component like the following the webpage will
not re-render itself because React State will not be able to detect the changes made.

this.state.attribute = "new-value";

Thus, React provides its own method setState(). setState() method takes a single parameter
and expects an object which should contain the set of values to be updated. Once the up-
date is done the method implicitly calls the render() method to repaint the page. Hence, the
correct method of updating the value of a state will be similar to the code below.

this.setState({attribute: "new-value"});

The only time we are allowed to define the state explicitly is in the constructor to provide
the initial state.

React is highly efficient and thus uses asynchronous state updates i.e. React may update
multiple setState() updates in a single go. Thus using the value of the current state may not
always generate the desired result. For example, let us take a case where we must keep a
count (Likes of a Post). Many developers may miswrite the code as below.

this.setState({counter: this.state.count + this.props.diff});

Now due to asynchronous processing, this.state.count may produce an undesirable result. A
more appropriate approach would be to use the following.

this.setState((prevState, props) => ({
 counter: prevState.count + props.diff
}));

In the above code we are using the ES6 thick arrow function format to take the previous
state and props of the component as parameters and are updating the counter. The same
can be written using the default functional way as follows.

this.setState(function(prevState, props){
 return {counter: prevState.count + props.diff};
});

State updates are independent. The state object of a component may contain multiple at-
tributes and React allows to use setState() function to update only a subset of those attrib-
utes as well as using multiple setState() methods to update each attribute value inde-
pendently. For example, let us take the following component state into account.

this.state = {
 darkTheme: False,
 searchTerm: ''};

UNIT- 2 Introduction to JSX & REACT JS

66 Prepared By: Prof. Hardik Chavda

The above definition has two attributes we can use a single setState() method to update
both together, or we can use separate setState() methods to update the attributes inde-
pendently. React internally merges setState() methods or updates only those attributes
which are needed.

Destructing Props and State,
Destructuring is a simple property that is used to make code much clear and readable, main-
ly when we pass props in React.

What is Destructuring?

• Destructuring is a characteristic of JavaScript, It is used to take out sections of data from
an array or objects, We can assign them to new own variables created by the developer.

• In destructuring, It does not change an array or any object, it makes a copy of the de-
sired object or array element by assigning them in its own new variables, later we can
use this new variable in React (class or functional) components.

• It makes the code more clear. When we access the props using this keyword, we have to
use this/ this.props throughout the program, but by the use of restructuring, we can dis-
card this/ this.props by assigning them in new variables.

• This is very difficult to monitor props in complex applications, so by assigning these
props in new own variables we can make a code more readable.

Advantages of Destructuring:

• It makes developer’s life easy, by assigning their own variables.

• Nested data is more complex, it takes time to access, but by the use of destructuring, we
can access faster of nested data.

• It improves the sustainability, readability of code.

• It helps to cut the amount of code used in an application.

• It trims the number of steps taken to access data properties.

• It provides components with the exact data properties.

• It saves time from iterate over an array of objects multiple times.

• In ReactJS We use multiple times ternary operators inside the render function, without
destructuring it looks complex and hard to access them, but by the use of destructuring,
we can improve the readability of ternary operators.

How to use Destructuring?

We can use the Destructuring in the following method in ReactJS:

In this example, we are going to simply display some words using destructuring and without
destructuring.

App.js:

import React from "react"
import Greet from './component/Greet'

UNIT- 2 Introduction to JSX & REACT JS

67 Prepared By: Prof. Hardik Chavda

class App extends React.component {
 render() {
 return (
 <div className="App">
 <Greet active="Hardik Chavda" activeStatus="CSE" />
 </div>
);
 }
}
export default App;

Without Destructuring:

import React from 'react';

const Greet = props => {
 return (
 <div>
 <div className="XYZ">
 <h3> {props.active} </h3>
 </div>

 <div className="PQR">
 <h1>{props.activeStatus}</h1>
 </div>
 </div>
)
}
export default Greet;

With Destructuring:

import React from 'react';

const Greet = () => {
 const {active, activeStatus } = props
 return (
 <div>
 <div >
 <h3> {active} </h3>
 </div>

 <div >
 <h1>{activeStatus}</h1>
 </div>
 </div>
)
}
export default Greet;

UNIT- 2 Introduction to JSX & REACT JS

68 Prepared By: Prof. Hardik Chavda

setState,
All the React components can have a state associated with them. The state of a component
can change either due to a response to an action performed by the user or an event trig-
gered by the system. Whenever the state changes, React re-renders the component to the
browser. Before updating the value of the state, we need to build an initial state setup.
Once we are done with it, we use the setState() method to change the state object. It en-
sures that the component has been updated and calls for re-rendering of the component.

setState is asynchronous call means if synchronous call gets called it may not get updated at
right time like to know current value of object after update using setState it may not get
give current updated value on console. To get some behavior of synchronous need to pass
function instead of object to setState.

Syntax: We can use setState() to change the state of the component directly as well as
through an arrow function.

setState({ stateName: updatedStateValue })

// OR
setState((prevState) => ({
 stateName: prevState.stateName + 1
}))

Example

import React, { Component } from 'react'

class App extends Component {
 constructor(props) {
 super(props)

 // Set initial state
 this.state = {
 greeting:
 'Click the button to receive greetings'
 }

 // Binding this keyword
 this.updateState = this.updateState.bind(this)
 }

 updateState() {
 // Changing state
 this.setState({
 greeting:
 'HardikChavda welcomes you !!'
 })
 }

UNIT- 2 Introduction to JSX & REACT JS

69 Prepared By: Prof. Hardik Chavda

 render() {
 return (
 <div>
 <h2>Greetings Portal</h2>
 <p>{this.state.greeting}</p>

 {/* Set click handler */}
 <button onClick={this.updateState}>
 Click me!
 </button>
 </div>
)
 }
}

export default App;

