
 UNIT- 3 Form Handling, components and fragments

 Event Handling : Event Handling and Binding event handlers,
 An event is an action that could be triggered as a result of the user action or system
 generated event. For example, a mouse click, loading of a web page, pressing a key, window
 resizing, and other interactions are called events.

 React has its own event handling system which is very similar to handling events on DOM
 elements. The react event handling system is known as Synthetic Events. The synthetic event
 is a cross-browser wrapper of the browser's native event.

 Handling events with react have some syntactic differences from handling events on DOM.
 These are:

 React events are named as camelCase instead of lowercase.
 With JSX, a function is passed as the event handler instead of a string. For example:

 Event declaration in plain HTML:

 <button onclick="showMessage()">
 Hello Geetanjali
 </button>

 Event declaration in React:

 <button onClick={showMessage}>
 Hello Geetanjali
 </button>

 In react, we cannot return false to prevent the default behavior. We must call preventDefault
 event explicitly to prevent the default behavior. For example:

 In plain HTML, to prevent the default link behavior of opening a new page, we can write:

 Click_Me

 73 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 In React, we can write it as:

 function ActionLink() {
 function handleClick(e) {

 e.preventDefault();
 console.log('You had clicked a Link.');

 }
 return (

 Click_Me

);

 }

 In the above example, e is a Synthetic Event which defines according to the W3C spec.

 Now let us see how to use Events in React.

 Example
 In the below example, we have used only one component and added an onChange event.
 This event will trigger the changeText function, which returns the company name.

 import React, { Component } from 'react';
 class App extends React.Component {

 constructor(props) {
 super(props);
 this.state = {

 companyName: ''
 };

 }
 changeText(event) {

 this.setState({
 companyName: event.target.value

 });
 }
 render() {

 return (
 <div>

 <h2>Simple Event Example</h2>
 <label htmlFor="name">Enter company name: </label>
 <input type="text" id="companyName" onChange={this.changeText.bind(this)} />
 <h4>You entered: {this.state.companyName}</h4>

 </div>
);

 }
 }
 export default App;

 74 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Rendering: Conditional Rendering and List Rendering,
 In React, we can create multiple components which encapsulate behavior that we need.
 After that, we can render them depending on some conditions or the state of our
 application. In other words, based on one or several conditions, a component decides which
 elements it will return. In React, conditional rendering works the same way as the conditions
 work in JavaScript. We use JavaScript operators to create elements representing the current
 state, and then React Components update the UI to match them.

 From the given scenario, we can understand how conditional rendering works. Consider an
 example of handling a login/logout button. The login and logout buttons will be separate
 components. If a user logged in, render the logout component to display the logout button.
 If a user is not logged in, render the login component to display the login button. In React,
 this situation is called conditional rendering.

 There is more than one way to do conditional rendering in React. They are given below.
 ● if
 ● ternary operator
 ● logical && operator
 ● switch case operator
 ● Conditional Rendering with enums

 With if
 It is the easiest way to have a conditional rendering in React in the render method. It is
 restricted to the total block of the component. IF the condition is true, it will return the
 element to be rendered. It can be understood in the below example.

 Example

 function UserLoggin(props) {
 return <h1>Welcome back!</h1>;

 }
 function GuestLoggin(props) {

 return <h1>Please sign up.</h1>;
 }
 function SignUp(props) {

 const isLoggedIn = props.isLoggedIn;
 if (isLoggedIn) {

 return <UserLogin />;
 }
 return <GuestLogin />;

 }

 ReactDOM.render(
 <SignUp isLoggedIn={false} />,
 document.getElementById('root')

);

 75 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Logical && operator
 This operator is used for checking the condition. If the condition is true, it will return the
 element right after &&, and if it is false, React will ignore and skip it.

 Syntax

 {
 condition &&
 // whatever written after && will be a part of output.

 }

 If you run the below code, you will not see the alert message because the condition is not
 matching.

 ('geetanjali' == 'Geetanjali') && alert('This alert will never be shown!')

 If you run the below code, you will see the alert message because the condition is matching.

 (10 > 5) && alert('This alert will be shown!')

 Example

 import React from 'react';
 function Example() {

 return (<div>
 {

 (10 > 5) && alert('This alert will be shown!')
 }

 </div>
);

 }

 You can see in the above output that as the condition (10 > 5) evaluates to true, the alert
 message is successfully rendered on the screen.

 Ternary operator
 The ternary operator is used in cases where two blocks alternate given a certain condition.
 This operator makes your if-else statement more concise. It takes three operands and is used
 as a shortcut for the if statement.

 Syntax

 condition ? true : false

 If the condition is true, statement1 will be rendered. Otherwise, false will be rendered.

 76 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Example

 render() {
 const isLoggedIn = this.state.isLoggedIn;
 return (

 <div>
 Welcome {isLoggedIn ? 'Back' : 'Please login first'}.

 </div>
);

 }

 Switch case operator
 Sometimes it is possible to have multiple conditional renderings. In the switch case,
 conditional rendering is applied based on a different state.

 Example

 function NotificationMsg({ text }) {
 switch (text) {

 case 'Hi All':
 return <Message: text={text} />;

 case 'Hello Geetanjali':
 return <Message text={text} />;

 default:
 return null;

 }
 }

 Conditional Rendering with enums
 An enum is a great way to have multiple conditional rendering. It is more readable as
 compared to switch case operators. It is perfect for mapping between different state. It is
 also perfect for mapping in more than one condition. It can be understood in the below
 example.

 Example

 function NotificationMsg({ text, state }) {
 return (

 <div>
 {{

 info: <Message text={text} />,
 warning: <Message text={text} />,

 }[state]}
 </div>

);
 }

 77 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Conditional Rendering Example
 In the below example, we have created a stateful component called App which maintains
 the login control. Here, we create three components representing Logout, Login, and
 Message component. The stateful component App will render either or depending on its
 current state.

 import React, { Component } from 'react';
 // Message Component
 function Message(props) {

 if (props.isLoggedIn)
 return <h1>Welcome Back!!!</h1>;

 else
 return <h1>Please Login First!!!</h1>;

 }
 // Login Component
 function Login(props) {

 return (
 <button onClick={props.clickInfo}> Login </button>

);
 }
 // Logout Component
 function Logout(props) {

 return (
 <button onClick={props.clickInfo}> Logout </button>

);
 }
 class App extends Component {

 constructor(props) {
 super(props);
 this.handleLogin = this.handleLogin.bind(this);
 this.handleLogout = this.handleLogout.bind(this);
 this.state = { isLoggedIn: false };

 }
 handleLogin() {

 this.setState({ isLoggedIn: true });
 }
 handleLogout() {

 this.setState({ isLoggedIn: false });
 }
 render() {

 return (
 <div>

 <h1> Conditional Rendering Example </h1>
 <Message isLoggedIn={this.state.isLoggedIn} />
 {

 (this.state.isLoggedIn) ? (
 <Logout clickInfo={this.handleLogout} />

 78 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

) : (
 <Login clickInfo={this.handleLogin} />

)
 }

 </div>
);

 }
 }
 export default App;

 List and keys,
 Lists are used to display data in an ordered format and mainly used to display menus on
 websites. In React, Lists can be created in a similar way as we create lists in JavaScript. Let us
 see how we transform Lists in regular JavaScript.

 The map() function is used for traversing the lists. In the below example, the map() function
 takes an array of numbers and multiplies their values with 5. We assign the new array
 returned by map() to the variable multiplyNums and log it.

 Example

 var numbers = [1, 2, 3, 4, 5];
 const multiplyNums = numbers.map((number) => {

 return (number * 5);
 });
 console.log(multiplyNums);
 OP:
 [5, 10, 15, 20, 25]

 Now, let us see how we create a list in React. To do this, we will use the map() function for
 traversing the list element, and for updates, we enclosed them between curly braces {}.
 Finally, we assign the array elements to listItems. Now, include this new list inside
 elements and render it to the DOM.

 Example

 import React from 'react';
 import ReactDOM from 'react-dom';
 const myList = ['Peter', 'Sachin', 'Kevin', 'Dhoni', 'Alisa'];
 const listItems = myList.map((myList) => {

 return {myList};
 });
 ReactDOM.render(

 {listItems} ,
 document.getElementById('root')

);

 79 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 React Lists
 Rendering Lists inside components
 In the previous example, we had directly rendered the list to the DOM. But it is not a good
 practice to render lists in React. In React, we had already seen that everything is built as
 individual components. Hence, we would need to render lists inside a component. We can
 understand it in the following code.

 Example

 import React from 'react';
 import ReactDOM from 'react-dom';

 function NameList(props) {
 const myLists = props.myLists;
 const listItems = myLists.map((myList) =>

 {myList}
);
 return (

 <div>
 <h2>Rendering Lists inside component</h2>
 {listItems}

 </div>
);

 }
 const myLists = ['Peter', 'Sachin', 'Kevin', 'Dhoni', 'Alisa'];
 ReactDOM.render(

 <NameList myLists={myLists} />,
 document.getElementById('app')

);
 export default App;

 Index as Key Anti-pattern
 A key is a unique identifier. In React, it is used to identify which items have changed,
 updated, or deleted from the Lists. It is useful when we dynamically create components or
 when the users alter the lists. It also helps to determine which components in a collection
 need to be re-rendered instead of re-rendering the entire set of components every time.

 Keys should be given inside the array to give the elements a stable identity. The best way to
 pick a key as a string that uniquely identifies the items in the list. It can be understood with
 the below example.

 Example

 const stringLists = ['Peter', 'Sachin', 'Kevin', 'Dhoni', 'Alisa'];
 const updatedLists = stringLists.map((strList) => {

 <li key={ strList.id }> {strList} ;
 });

 80 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 If there are no stable IDs for rendered items, you can assign the item index as a key to the
 lists. It can be shown in the below example.

 Example

 const stringLists = ['Peter', 'Sachin', 'Kevin', 'Dhoni', 'Alisa'];
 const updatedLists = stringLists.map((strList, index) => {

 <li key={ index }> {strList} ;
 });

 Note : It is not recommended to use indexes for keys if the order of the item may change in
 future. It creates confusion for the developer and may cause issues with the component
 state.

 Using Keys with component
 Consider you have created a separate component for ListItem and extracting ListItem from
 that component. In this case, you should have to assign keys on the <ListItem /> elements in
 the array, not to the elements in the ListItem itself. To avoid mistakes, you have to keep
 in mind that keys only make sense in the context of the surrounding array. So, anything you
 are returning from map() function is recommended to be assigned a key.

 Example: Incorrect Key usage

 import React from 'react';
 import ReactDOM from 'react-dom';

 function ListItem(props) {
 const item = props.item;
 return (

 // Wrong! No need to specify the key here.
 <li key={item.toString()} >

 {item}

);
 }
 function NameList(props) {

 const myLists = props.myLists;
 const listItems = myLists.map((strLists) =>

 // The key should have been specified here.
 <ListItem item={strLists} />

);
 return (

 <div>
 <h2>Incorrect Key Usage Example</h2>
 {listItems}

 </div>
);

 }

 81 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 const myLists = ['Peter', 'Sachin', 'Kevin', 'Dhoni', 'Alisa'];
 ReactDOM.render(

 <NameList myLists={myLists} />,
 document.getElementById('app')

);
 export default App;

 In the given example, the list is rendered successfully. But it is not a good practice that we
 had not assigned a key to the map() iterator.

 React Keys
 Example : Correct Key usage
 To correct the above example, we should have to assign a key to the map() iterator.

 import React from 'react';
 import ReactDOM from 'react-dom';

 function ListItem(props) {
 const item = props.item;
 return (

 // No need to specify the key here.
 {item}

);
 }
 function NameList(props) {

 const myLists = props.myLists;
 const listItems = myLists.map((strLists) =>

 // The key should have been specified here.
 <ListItem key={myLists.toString()} item={strLists} />

);
 return (

 <div>
 <h2>Correct Key Usage Example</h2>
 {listItems}

 </div>
);

 }
 const myLists = ['Peter', 'Sachin', 'Kevin', 'Dhoni', 'Alisa'];
 ReactDOM.render(

 <NameList myLists={myLists} />,
 document.getElementById('app')

);
 export default App;

 82 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Uniqueness of Keys among Siblings

 We had discussed that keys assignment in arrays must be unique among their siblings.
 However, it doesn't mean that the keys should be globally unique. We can use the same set
 of keys in producing two different arrays. It can be understood in the below example.

 Example

 import React from 'react';
 import ReactDOM from 'react-dom';
 function MenuBlog(props) {

 const titlebar = (

 {props.data.map((show) =>
 <li key={show.id}>

 {show.title}

)}

);
 const content = props.data.map((show) =>

 <div key={show.id}>
 <h3>{show.title}: {show.content}</h3>

 </div>
);
 return (

 <div>
 {titlebar}
 <hr />
 {content}

 </div>
);

 }
 const data = [

 { id: 1, title: 'First', content: 'Welcome to Geetanjali!!' },
 { id: 2, title: 'Second', content: 'It is the best ReactJS Tutorial!!' },
 { id: 3, title: 'Third', content: 'Here, you can learn all the ReactJS topics!!' }

];
 ReactDOM.render(

 <MenuBlog data={data} />,
 document.getElementById('app')

);
 export default App;

 83 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Introduction: Basic form handling
 Forms are an integral part of any modern web application. It allows the users to interact with
 the application as well as gather information from the users. Forms can perform many tasks
 that depend on the nature of your business requirements and logic such as authentication of
 the user, adding user, searching, filtering, booking, ordering, etc. A form can contain text
 fields, buttons, checkbox, radio button, etc.

 Creating Form
 React offers a stateful, reactive approach to build a form. The component rather than the
 DOM usually handles the React form. In React, the form is usually implemented by using
 controlled components.

 There are mainly two types of form input in React.

 ● Uncontrolled component
 ● Controlled component

 Uncontrolled component
 The uncontrolled input is similar to the traditional HTML form inputs. The DOM itself
 handles the form data. Here, the HTML elements maintain their own state that will be
 updated when the input value changes. To write an uncontrolled component, you need to
 use a ref to get form values from the DOM. In other words, there is no need to write an
 event handler for every state update. You can use a ref to access the input field value of the
 form from the DOM.

 Example
 In this example, the code accepts a field username and company name in an uncontrolled
 component.

 import React, { Component } from 'react';
 class App extends React.Component {

 constructor(props) {
 super(props);
 this.updateSubmit = this.updateSubmit.bind(this);
 this.input = React.createRef();

 }
 updateSubmit(event) {

 alert('You have entered the UserName and CompanyName successfully.');
 event.preventDefault();

 }
 render() {

 return (
 <form onSubmit={this.updateSubmit}>

 <h1>Uncontrolled Form Example</h1>
 <label>Name:

 <input type="text" ref={this.input} />
 </label>

 84 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 <label>
 CompanyName:
 <input type="text" ref={this.input} />

 </label>
 <input type="submit" value="Submit" />

 </form>
);

 }
 }
 export default App;

 After filling the data in the field, you get the message that can be seen in the below screen.

 Controlled Component
 In HTML, form elements typically maintain their own state and update it according to the
 user input. In the controlled component, the input form element is handled by the
 component rather than the DOM. Here, the mutable state is kept in the state property and
 will be updated only with the setState() method.

 Controlled components have functions that govern the data passing into them on every
 onChange event, rather than grabbing the data only once, e.g., when you click a submit
 button. This data is then saved to state and updated with the setState() method. This makes
 component have better control over the form elements and data.

 A controlled component takes its current value through props and notifies the changes
 through callbacks like an onChange event. A parent component "controls" this change by
 handling the callback and managing its own state and then passing the new values as props
 to the controlled component. It is also called as a "dumb component."

 Example

 import React, { Component } from 'react';
 class App extends React.Component {

 constructor(props) {
 super(props);
 this.state = { value: '' };
 this.handleChange = this.handleChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);

 }
 handleChange(event) {

 this.setState({ value: event.target.value });
 }
 handleSubmit(event) {

 alert('You have submitted the input successfully: ' + this.state.value);
 event.preventDefault();

 }
 render() {

 85 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 return (
 <form onSubmit={this.handleSubmit}>

 <h1>Controlled Form Example</h1>
 <label>

 Name:
 <input type="text" value={this.state.value} onChange={this.handleChange} />

 </label>
 <input type="submit" value="Submit" />

 </form>
);

 }
 }
 export default App;

 Handling Multiple Inputs in Controlled Component
 If you want to handle multiple controlled input elements, add a name attribute to each
 element, and then the handler function decided what to do based on the value of
 event.target.name.

 Example

 import React, { Component } from 'react';
 class App extends React.Component {

 constructor(props) {
 super(props);
 this.state = {

 personGoing: true,
 numberOfPersons: 5

 };
 this.handleInputChange = this.handleInputChange.bind(this);

 }
 handleInputChange(event) {

 const target = event.target;
 const value = target.type === 'checkbox' ? target.checked : target.value;
 const name = target.name;
 this.setState({

 [name]: value
 });

 }
 render() {

 return (
 <form>

 <h1>Multiple Input Controlled Form Example</h1>
 <label>

 Is Person going:
 <input

 86 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 name="personGoing"
 type="checkbox"
 checked={this.state.personGoing}
 onChange={this.handleInputChange} />

 </label>

 <label>

 Number of persons:
 <input

 name="numberOfPersons"
 type="number"
 value={this.state.numberOfPersons}
 onChange={this.handleInputChange} />

 </label>
 </form>

);
 }

 }
 export default App;

 Difference table between controlled and uncontrolled component .

 Sr. No Controlled Uncontrolled

 1 It does not maintain its internal state. It maintains its internal states.

 2 Here, data is controlled by the parent
 component.

 Here, data is controlled by the DOM
 itself.

 3 It accepts its current value as a prop. It uses a ref for their current values.

 4 It allows validation control. It does not allow validation control.

 5 It has better control over the form
 elements and data.

 It has limited control over the form
 elements and data.

 87 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Components: Components Life Cycle Methods ,
 In ReactJS, every component creation process involves various lifecycle methods. These
 lifecycle methods are termed as component's lifecycle. These lifecycle methods are not very
 complicated and are called at various points during a component's life. The lifecycle of the
 component is divided into four phases. They are:

 ● Initial Phase
 ● Mounting Phase
 ● Updating Phase
 ● Unmounting Phase

 1. Initial Phase
 It is the birth phase of the lifecycle of a ReactJS component. Here, the component starts its
 journey on a way to the DOM. In this phase, a component contains the default Props and
 initial State. These default properties are done in the constructor of a component. The initial
 phase only occurs once and consists of the following methods.

 getDefaultProps()
 It is used to specify the default value of this.props. It is invoked before the creation of the
 component or any props from the parent is passed into it.

 getInitialState()
 It is used to specify the default value of this.state. It is invoked before the creation of the
 component.

 88 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 2. Mounting Phase
 In this phase, the instance of a component is created and inserted into the DOM. It consists
 of the following methods.

 componentWillMount()
 This is invoked immediately before a component gets rendered into the DOM. In the case,
 when you call setState() inside this method, the component will not re-render.

 componentDidMount()
 This is invoked immediately after a component gets rendered and placed on the DOM. Now,
 you can do any DOM querying operations.

 render()
 This method is defined in each and every component. It is responsible for returning a single
 root HTML node element. If you don't want to render anything, you can return a null or false
 value.

 3. Updating Phase
 It is the next phase of the lifecycle of a react component. Here, we get new Props and
 change State. This phase also allows to handle user interaction and provide communication
 with the components hierarchy. The main aim of this phase is to ensure that the component
 is displaying the latest version of itself. Unlike the Birth or Death phase, this phase repeats
 again and again. This phase consists of the following methods.

 componentWillRecieveProps()
 It is invoked when a component receives new props. If you want to update the state in
 response to prop changes, you should compare this.props and nextProps to perform state
 transition by using this.setState() method.

 shouldComponentUpdate()
 It is invoked when a component decides any changes/updation to the DOM. It allows you to
 control the component's behavior of updating itself. If this method returns true, the
 component will update. Otherwise, the component will skip the updating.

 componentWillUpdate()
 It is invoked just before the component updating occurs. Here, you can't change the
 component state by invoking this.setState() method. It will not be called, if
 shouldComponentUpdate() returns false.

 render()
 It is invoked to examine this.props and this.state and return one of the following types:
 React elements, Arrays and fragments, Booleans or null, String and Number. If
 shouldComponentUpdate() returns false, the code inside render() will be invoked again to
 ensure that the component displays itself properly.

 89 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 componentDidUpdate()
 It is invoked immediately after the component updating occurs. In this method, you can put
 any code inside this which you want to execute once the updating occurs. This method is not
 invoked for the initial render.

 4. Unmounting Phase
 It is the final phase of the react component lifecycle. It is called when a component instance
 is destroyed and unmounted from the DOM. This phase contains only one method and is
 given below.

 componentWillUnmount()
 This method is invoked immediately before a component is destroyed and unmounted
 permanently. It performs any necessary cleanup related task such as invalidating timers,
 event listeners, canceling network requests, or cleaning up DOM elements. If a component
 instance is unmounted, you cannot mount it again.

 90 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Example

 import React, { Component } from 'react';

 class App extends React.Component {
 constructor(props) {

 super(props);
 this.state = { hello: "Geetanjali" };
 this.changeState = this.changeState.bind(this)

 }
 render() {

 return (
 <div>

 <h1>ReactJS component's Lifecycle</h1>
 <h3>Hello {this.state.hello}</h3>
 <button onClick={this.changeState}>Click Here!</button>

 </div>
);

 }
 componentWillMount() {

 console.log('Component Will MOUNT!')
 }
 componentDidMount() {

 console.log('Component Did MOUNT!')
 }
 changeState() {

 this.setState({ hello: "All!!- Its a great reactjs tutorial." });
 }
 componentWillReceiveProps(newProps) {

 console.log('Component Will Recieve Props!')
 }
 shouldComponentUpdate(newProps, newState) {

 return true;
 }
 componentWillUpdate(nextProps, nextState) {

 console.log('Component Will UPDATE!');
 }
 componentDidUpdate(prevProps, prevState) {

 console.log('Component Did UPDATE!')
 }
 componentWillUnmount() {

 console.log('Component Will UNMOUNT!')
 }

 }
 export default App;

 91 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Pure Components
 Generally, In ReactJS, we use shouldComponentUpdate() Lifecycle method to customize the
 default behavior and implement it when the React component should re-render or update
 itself.

 Prerequisite:
 ● ReactJS Components
 ● ReactJS Components – Set 2

 Now, ReactJS has provided us with a Pure Component. If we extend a class with Pure
 Component, there is no need for shouldComponentUpdate() Lifecycle Method. ReactJS Pure
 Component Class compares current state and props with new props and states to decide
 whether the React component should re-render itself or Not.

 In simple words, If the previous value of state or props and the new value of state or props is
 the same, the component will not re-render itself. Since Pure Components restricts the
 re-rendering when there is no use of re-rendering of the component. Pure Components are
 Class Components which extend React.PureComponent.

 Example: Program to demonstrate the creation of Pure Components.

 import React from ‘react’;

 export default class Test extends React.PureComponent {
 render() {

 return <h1>Welcome to Geetanjali</h1>;
 }

 }

 Extending React Class Components with Pure Components ensures the higher performance
 of the Component and ultimately makes your application faster, While in the case of Regular
 Component, it will always re-render either value of State and Props changes or not.

 While using Pure Components, Things to be noted are that, In these components, the Value
 of State and Props are Shallow Compared (Shallow Comparison) and It also takes care of
 “shouldComponentUpdate” Lifecycle method implicitly.

 So there is a possibility that if these State and Props Objects contain nested data structure
 then Pure Component’s implemented shouldComponentUpdate will return false and will not
 update the whole subtree of Children of this Class Component. So in Pure Component, the
 nested data structure doesn’t work properly.

 In this case, State and Props Objects should be simple objects and Child Elements should
 also be Pure, which means to return the same output for the same input values at any
 instance.

 92 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 Fragments
 A common pattern in React is for a component to return multiple elements. Fragments let
 you group a list of children without adding extra nodes to the DOM.

 There is also a new short syntax for declaring them.

 render() {
 return (

 <React.Fragment>
 <ChildA />
 <ChildB />
 <ChildC />

 </React.Fragment>
);

 }

 Motivation
 A common pattern is for a component to return a list of children. Take this example React
 snippet:

 class Table extends React.Component {
 render() {

 return (
 <table>

 <tr>
 <Columns />

 </tr>
 </table>

);
 }

 }

 <Columns /> would need to return multiple <td> elements in order for the rendered HTML
 to be valid. If a parent div was used inside the render() of <Columns />, then the resulting
 HTML will be invalid.

 class Columns extends React.Component {
 render() {

 return (
 <div>

 <td>Hello</td>
 <td>World</td>

 </div>
);

 }
 }
 results in a < Table /> output of:

 93 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 <table>
 <tr>

 <div>
 <td>Hello</td>
 <td>World</td>

 </div>
 </tr>

 </table>

 Fragments solve this problem.

 Usage

 class Columns extends React.Component {
 render() {

 return (
 <React.Fragment>

 <td>Hello</td>
 <td>World</td>

 </React.Fragment>
);

 }
 }

 which results in a correct <Table /> output of:

 <table>
 <tr>

 <td>Hello</td>
 <td>World</td>

 </tr>
 </table>

 Short Syntax
 There is a new, shorter syntax you can use for declaring fragments. It looks like empty tags:
 You can use <></> the same way you’d use any other element except that it doesn’t support
 keys or attributes.

 Keyed Fragments
 Fragments declared with the explicit <React.Fragment> syntax may have keys. A use case for
 this is mapping a collection to an array of fragments — for example, to create a description
 list:

 class Columns extends React.Component {
 render() {

 return (
 <>

 94 Prepared By: Prof. Hardik Chavda

 UNIT- 3 Form Handling, components and fragments

 <td>Hello</td>
 <td>World</td>

 </>
);

 }
 }

 function Glossary(props) {
 return (

 <dl>
 {props.items.map(item => (

 // Without the `key`, React will fire a key warning
 <React.Fragment key={item.id}>

 <dt>{item.term}</dt>
 <dd>{item.description}</dd>

 </React.Fragment>
))}

 </dl>
);

 }

 key is the only attribute that can be passed to Fragment. In the future, we may add support
 for additional attributes, such as event handlers.

 95 Prepared By: Prof. Hardik Chavda

