
 UNIT- 4 Memo, Refs, Props and Context

 Memo

 What is React Memo?Anchor
 Components in React are designed to re-render whenever the state or props value changes.
 However, this can impact your application's performance because, even if the change is only
 intended to affect the parent component, every other child component attached to the
 parent component will re-render. When a parent component re-renders, so do all of its child
 components.

 React Memo is a higher-order component that wraps around a component to memoize the
 rendered output and avoid unnecessary renderings. This improves performance because it
 memoizes the result and skips rendering to reuse the last rendered result.

 There are two ways you can wrap your component with React.memo(). It is either you wrap
 the actual component directly without having to create a new variable to store the
 memoized component:

 const myComponent = React.memo((props) => {
 /* render using props */

 });

 export default myComponent;

 Another option is to create a new variable to store the memoized component and then
 export the new variable:

 const myComponent = (props) => {
 /* render using props */

 };

 export const MemoizedComponent = React.memo(myComponent);

 In the example above, myComponent outputs the same content as MemoizedComponent,
 but the difference between both is that MemoizedComponent render is memoized. This
 means that this component will only re-render when the props change.

 96 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 Note: A memoized component will only re-render when there is a change in props value or
 when the state and context of the component change.

 When to use React MemoAnchor
 You now know what it means to memoize a component and the advantages of optimization.
 But this doesn’t mean you should memoize all your components to ensure maximum
 performance optimization .

 It is important to know when and where to memoize your component else it would not fulfill
 its purpose. For example, React Memo is used to avoid unnecessary re-renders when there
 is no change to the state or context of your component. If the state and content of your
 component will ALWAYS change, React Memo becomes useless. Here are other points:

 ● Use React Memo if your component will render quite often.
 ● Use it when your component often renders with the same props. This happens to

 child components who are forced to re-render with the same props whenever the
 parent component renders.

 ● Use it in pure functional components alone. If you are using a class component, use
 the React.PureComponent.

 ● Use it if your component is big enough (contains a decent amount of UI elements) to
 have props equality check.

 How to use React MemoAnchor
 At this point, you now understand when to use React Memo and what it does. The major
 point is that you should use it when your component often renders with the same props.

 Suppose you have a React application such as a Todo application in which you decide to
 break up the application into separate components to ensure it is easy to understand and
 use. You will have the parent component that holds your todo array in a state. The todo
 array will be passed as a prop to the Todo component:

 // App.js
 import React, { useState } from 'react';
 import Todo from './Todo';

 const App = () => {
 console.log('App component rendered');
 const [todo, setTodo] = useState([

 { id: 1, title: 'Read Book' },
 { id: 2, title: 'Fix Bug' },

]);
 const [text, setText] = useState('');

 const addTodo = () => {
 let newTodo = { id: 3, title: text };
 setTodo([...todo, newTodo]);

 97 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 };

 return (
 <div>

 <input
 type="text"
 value={text}
 onChange={(e) => setText(e.target.value)}

 />
 <button type="button" onClick={addTodo}>

 Add todo
 </button>
 <Todo list={todo} />

 </div>
);

 };

 export default App;

 In the component above, there is a state to hold all the todo in an array, and then there is a
 form you would use to add a new todo to the array. Notice that at the beginning of the
 component, a console.log() statement will be implemented once your application renders.

 The todo items are to be passed as props to the Todo component, which has been imported.
 This means that the Todo component is a child component of the App component. In the
 Todo component, the todo array that has been passed as a prop named list will be iterated
 so that you can access each item in the array and display:

 // Todo.js
 import React from 'react';
 import TodoItem from './TodoItem';

 const Todo = ({ list }) => {
 console.log('Todo component rendered');
 return (

 {list.map((item) => (

 <TodoItem key={item.id} item={item} />
))}

);

 };
 export default Todo;

 98 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 In the code above, a console.log() statement will display a text to show when the Todo
 component renders or re-renders. In the component above, each todo item is passed as a
 prop to a TodoItem component. This is done to properly explain what happens and when
 you need to memoize a component:

 //TodoItem.js
 const TodoItem = ({ item }) => {

 console.log('TodoItem component rendered');
 return {item.title};

 };
 export default TodoItem;

 The component above also has a console.log statement to help you know when it renders
 and re-renders. When you run your application and check the console, you will notice that
 all three components render.

 Our component renders four times, once for the parent component (App.js), once for the
 Todo component, and finally, the TodoItem component renders twice because it has two
 elements. This means altogether, the application renders four times. This is normal for the
 initial render. But when you change something in the parent component that doesn’t affect
 the child components, only the parent component should be rendered.

 99 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 Introduction to Refs: Refs,

 Refs is the shorthand used for references in React. It is similar to keys in React. It is an
 attribute which makes it possible to store a reference to particular DOM nodes or React
 elements. It provides a way to access React DOM nodes or React elements and how to
 interact with it. It is used when we want to change the value of a child component, without
 making the use of props.

 When to Use Refs
 Refs can be used in the following cases :

 ● When we need DOM measurements such as managing focus, text selection, or media
 playback.

 ● It is used in triggering imperative animations.
 ● When integrating with third-party DOM libraries.
 ● It can also be used in callbacks.

 When to not use Refs
 ● Its use should be avoided for anything that can be done declaratively. For example,

 instead of using open() and close() methods on a Dialog component, you need to
 pass an isOpen prop to it.

 ● You should have to avoid overuse of the Refs.

 How to create Refs
 In React, Refs can be created by using React.createRef(). It can be assigned to React
 elements via the ref attribute. It is commonly assigned to an instance property when a
 component is created, and then can be referenced throughout the component.

 class MyComponent extends React.Component {
 constructor(props) {

 super(props);
 this.callRef = React.createRef();

 }
 render() {

 return <div ref={this.callRef} />;
 }

 100 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 }

 How to access Refs
 In React, when a ref is passed to an element inside the render method, a reference to the
 node can be accessed via the current attribute of the ref.

 const node = this.callRef.current;

 Refs current Properties
 The ref value differs depending on the type of the node:

 When the ref attribute is used in an HTML element, the ref created with React.createRef()
 receives the underlying DOM element as its current property.
 If the ref attribute is used on a custom class component, then the ref object receives the
 mounted instance of the component as its current property.
 The ref attribute cannot be used on function components because they don't have
 instances.

 Add Ref to DOM elements
 In the below example, we are adding a ref to store the reference to a DOM node or element.

 import React, { Component } from 'react';
 import { render } from 'react-dom';

 class App extends React.Component {
 constructor(props) {

 super(props);
 this.callRef = React.createRef();
 this.addingRefInput = this.addingRefInput.bind(this);

 }

 addingRefInput() {
 this.callRef.current.focus();

 }

 render() {
 return (

 <div>
 <h2>Adding Ref to DOM element</h2>
 <input

 type="text"
 ref={this.callRef} />

 <input
 type="button"
 value="Add text input"

 101 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 onClick={this.addingRefInput}
 />

 </div>
);

 }
 }
 export default App;

 Add Ref to Class components
 In the below example, we are adding a ref to store the reference to a class component.

 Example

 import React, { Component } from 'react';
 import { render } from 'react-dom';

 function CustomInput(props) {
 let callRefInput = React.createRef();

 function handleClick() {
 callRefInput.current.focus();

 }

 return (
 <div>

 <h2>Adding Ref to Class Component</h2>
 <input

 type="text"
 ref={callRefInput} />

 <input
 type="button"
 value="Focus input"
 onClick={handleClick}

 />
 </div>

);
 }
 class App extends React.Component {

 constructor(props) {
 super(props);
 this.callRefInput = React.createRef();

 }

 focusRefInput() {
 this.callRefInput.current.focus();

 }

 102 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 render() {
 return (

 <CustomInput ref={this.callRefInput} />
);

 }
 }
 export default App;

 Callback refs
 In react, there is another way to use refs that is called "callback refs" and it gives more
 control when the refs are set and unset. Instead of creating refs by createRef() method,
 React allows a way to create refs by passing a callback function to the ref attribute of a
 component. It looks like the code below.

 <input type="text" ref={element => this.callRefInput = element} />

 The callback function is used to store a reference to the DOM node in an instance property
 and can be accessed elsewhere. It can be accessed as below:

 this.callRefInput.value

 The example below helps to understand the working of callback refs.

 import React, { Component } from 'react';
 import { render } from 'react-dom';

 class App extends React.Component {
 constructor(props) {

 super(props);

 this.callRefInput = null;

 this.setInputRef = element => {
 this.callRefInput = element;

 };

 this.focusRefInput = () => {
 //Focus the input using the raw DOM API
 if (this.callRefInput) this.callRefInput.focus();

 };
 }

 componentDidMount() {

 103 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 //autofocus of the input on mount
 this.focusRefInput();

 }

 render() {
 return (

 <div>
 <h2>Callback Refs Example</h2>
 <input

 type="text"
 ref={this.setInputRef}

 />
 <input

 type="button"
 value="Focus input text"
 onClick={this.focusRefInput}

 />
 </div>

);
 }

 }
 export default App;

 In the above example, React will call the "ref" callback to store the reference to the input
 DOM element when the component mounts, and when the component unmounts, call it
 with null. Refs are always up-to-date before the componentDidMount or
 componentDidUpdate fires. The callback refs passed between components is the same as
 you can work with object refs, which is created with React.createRef().

 Forwarding Refs:
 The forwardRef method in React allows parent components to move down (or “forward”)
 refs to their children. ForwardRef gives a child component a reference to a DOM entity
 created by its parent component in React. This helps the child to read and modify the
 element from any location where it is used.

 How does forwardRef work in React?
 In React, parent components typically use props to transfer data down to their children.
 Consider you make a child component with a new set of props to change its behavior. We
 need a way to change the behavior of a child component without having to look for the state
 or re-rendering the component. We can do this by using refs. We can access a DOM node
 that is represented by an element using refs. As a result, we will make changes to it without
 affecting its state or having to re-render it.

 When a child component needs to refer to its parent’s current node, the parent component
 must have a way for the child to receive its ref. The technique is known as ref forwarding.

 104 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 Syntax:

 React.forwardRef((props, ref) => {})

 Parameters: It takes a function with props and ref arguments.
 Return Value: This function returns a JSX Element.

 import React from 'react'

 class App extends React.Component {
 constructor(props) {

 super(props)
 this.aRef = React.createRef()

 }
 render() {

 return (
 <>

 <Counter ref={this.aRef} />
 <button onClick={() => { console.log(this.aRef) }}>

 Ref
 </button>

 </>
)

 }
 }

 const Counter = React.forwardRef((props, ref) => {
 class Counter extends React.Component {

 constructor(props) {
 super(props)
 this.state = {

 count: 0
 }

 }
 render() {

 return (
 <div>

 Count: {this.state.count}
 <button ref={ref} onClick={() => this.setState(

 { count: this.state.count + 1 })}>
 Increment

 </button>
 </div>

)
 }

 }

 105 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 return <Counter />
 })

 export default App

 Explanation : Since the counter is within the function, it can access the props and ref
 parameters using a closure. The counter is rendered and returned. The ref passed to the
 Counter component is set to the value of the button element’s ref attribute. The counter
 element’s ref attribute will now be set to refer to the button element.

 The Counter component is rendered by the App component. It starts by creating a ref
 this.aRef is assigned to the Counter component’s ref attribute as a value. We’ve included a
 button that logs the value of this.aRef. The this.aRef will hold the HTMLButtonElement of the
 Incr button in the Counter component. Clicking on the Ref button will confirm that It will log
 this.aRef which will log the object of the Incr button HTMLButtonElement. It didn’t log the
 instance of the Counter because the Counter component forwarded it to its child
 component, the Increment button.

 106 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 React portals:

 React portals come up with a way to render children into a DOM node that occurs outside
 the DOM hierarchy of the parent component. The portals were introduced in the React 16.0
 version.

 So far we were having one DOM element in the HTML into which we were mounting our
 react application, i.e., the root element of our index.html in the public folder. Basically, we
 mount our App component onto our root element. It is almost a convention to have a div
 element with the id of root to be used as the root DOM element. If you take a look at the
 browser in the DOM tree every single React component in our application falls under the
 root element, i.e., inside this statement.

 <div id="root"></div>

 But React Portals provide us the ability to break out of this dom tree and render a
 component onto a dom node that is not under this root element. Doing so breaks the
 convention where a component needs to be rendered as a new element and follow a
 parent-child hierarchy. They are commonly used in modal dialog boxes, hovercards, loaders,
 and popup messages.

 Syntax :

 ReactDOM.createPortal(child, container)

 Parameters: Here the first parameter is a child which can be a React element, string, or a
 fragment and the second parameter is a container which is the DOM node (or location) lying
 outside the DOM hierarchy of the parent component at which our portal is to be inserted.

 Importing : To create and use portals you need to import ReactDOM as shown below.
 Example

 //App.js
 import ReactDOM from 'react-dom'
 function App() {

 // Creating a portal
 return ReactDOM.createPortal(

 107 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 <h1>Portal demo</h1>,
 document.getElementById('portal')

)
 }
 export default App;

 <!-- index.htm–>
 <!DOCTYPE html>
 <html lang="en">

 <head>
 <meta charset="utf-8" />
 <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <meta name="theme-color" content="#000000" />
 <meta

 name="description"
 content="Web site created using create-react-app"

 />
 <link rel="apple-touch-icon" href="%PUBLIC_URL%/logo192.png" />
 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />
 <title>React App</title>

 </head>
 <body>

 <noscript>
 You need to enable JavaScript to run this app.

 </noscript>
 <div id="root"></div>

 <!-- new div added to access the child component -->
 <div id="portal"></div>

 </body>
 </html>

 Explanation : Here, we can see that our <h1> tag Portal Demo is under the newly created
 portal DOM node, not the traditional root DOM node. It clearly tells us how React Portal
 provides the ability to break out of the root DOM tree and renders a component/element
 outside the parent DOM element.

 108 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 Components: Higher Order Components

 It is also known as HOC. In React, HOC is an advanced technique for reusing component
 logic. It is a function that takes a component and returns a new component. According to
 the official website, it is not the feature(part) in React API, but a pattern that emerges from
 React compositional nature. They are similar to JavaScript functions used for adding
 additional functionalities to the existing component.

 A higher order component function accepts another function as an argument. The map
 function is the best example to understand this. The main goal of this is to decompose the
 component logic into simpler and smaller functions that can be reused as you need.

 Syntax:

 const NewComponent = higherOrderComponent(WrappedComponent);

 We know that a component transforms props into UI, and a higher-order component
 converts a component to another component and allows to add additional data or
 functionality into this. Hocs are common in third-party libraries. The examples of HOCs are
 Redux's connect and Relay's createFragmentContainer.

 Now, we can understand the working of HOCs from the below example.

 //Function Creation
 function add(a, b) {

 return a + b
 }
 function higherOrder(a, addReference) {

 return addReference(a, 20)
 }
 //Function call
 higherOrder(30, add) // 50

 In the above example, we have created two functions add() and higherOrder(). Now, we
 provide the add() function as an argument to the higherOrder() function. For invoking,
 rename it addReference in the higherOrder() function, and then invoke it.

 Here, the function you are passing is called a callback function, and the function where you
 are passing the callback function is called a higher-order(HOCs) function.

 109 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 Example
 Create a new file with the name HOC.js. In this file, we have made one function HOC. It
 accepts one argument as a component. Here, that component is App.

 //HOC.js
 import React, { Component } from 'react';
 export default function Hoc(HocComponent) {

 return class extends Component {
 render() {

 return (
 <div>

 <HocComponent></HocComponent>
 </div>

);
 }

 }
 }

 Now, include the HOC.js file into the App.js file. In this file, we need to call the HOC function.

 App = Hoc(App);

 The App component is wrapped inside another React component so that we can modify it.
 Thus, it becomes the primary application of the Higher-Order Components.

 //App.js
 import React, { Component } from 'react';
 import Hoc from './HOC';

 class App extends Component {
 render() {

 return (
 <div>

 <h2>HOC Example</h2>
 Geetanjali provides best CS tutorials.

 </div>
)

 }
 }
 App = Hoc(App);
 export default App;

 110 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 Higher-Order Component Conventions
 Do not use HOCs inside the render method of a component.

 The static methods must be copied over to have access to them. You can do this using the
 hoist-non-react-statics package to automatically copy all non-React static methods.

 HOCs do not work for refs as 'Refs' does not pass through as a parameter or argument. If you
 add a ref to an element in the HOC component, the ref refers to an instance of the
 outermost container component, not the wrapped component.

 111 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 Props Again!: Rendering Props and Context

 Render Props in React is something where a component’s prop is assigned a function and
 that is called in the render method of the component. Calling the function will return a React
 element or component. Third-party libraries like React Router and Downshift use this
 approach.

 A render prop is a function prop that the component uses to know what to render. Through
 this, we can also pass a state to another.

 Example
 Create a Movement.js file and code as below,

 import React, { Component } from 'react'

 export class Movement extends Component {

 constructor(props) {
 super(props)

 this.state = {
 x: 0,
 y: 0

 }
 }

 onMouseMove = (event) => {
 this.setState({

 x: event.clientX,
 y: event.clientY

 })
 }

 render() {
 const { x, y } = this.state
 return (

 112 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 <div style={{ height: '100%' }} onMouseMove={this.onMouseMove}>
 <h1> The current mouse position is ({x},{y})</h1>

 </div>
)

 }
 }

 export default Movement

 Now add this Movement.js in App.js,

 import React from 'react';
 import './App.css';
 import './css/custom.css';
 import Movement from './components/Movement'

 function App() {
 return (

 <div>
 <Movement></Movement>

 </div>
);

 }

 export default App;

 Now let’s go further with the demo, we will create a component named Monkey in which on
 moving the mouse, the monkey will also move following the banana.

 Change the code of Movement.js as below.

 import React, { Component } from 'react'
 import PropTypes from 'prop-types'

 export class Movement extends Component {

 static propTypes = {
 render: PropTypes.func.isRequired

 }

 state = { x: 0, y: 0 }

 onMouseMove = (event) => {
 this.setState({

 x: event.clientX,
 y: event.clientY

 113 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 })
 }

 render() {
 return (

 <div onMouseMove={this.onMouseMove}>
 {this.props.render(this.state)}

 </div>
)

 }
 }
 export default Movement

 Now, create Monkey.js with the below code. Below, we also need 2 images of monkey and
 banana respectively which are uploaded in the source code of Demo2.

 import React, { Component } from 'react'
 import monkey from '../images/monkey.jpg'
 import banana from '../images/banana.jpg'

 export class Monkey extends Component {
 render() {

 const { x, y } = this.props.Movement

 return (
 <div>

 <img src={monkey} alt='monkey' style={{ position: 'relative', left: x, right: y,
 height: 150 }}>

 <img src={banana} alt='banana' style={{ position: 'relative', left: (x + 10), right: (y
 + 10), height: 30 }}>

 </div>
)

 }
 }

 export default Monkey

 Now, in the final step, call Monkey.js in App.js.

 import React from 'react';
 import './App.css';
 import './css/custom.css';
 import Movement from './components/Movement'
 import Monkey from './components/Monkey'

 function App() {

 114 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 return (
 <div>

 <Movement render={({ x, y }) => (
 <Monkey Movement={{ x, y }} />

)} />

 </div>
);

 }

 export default App;

 In the above program, on moving the mouse, the monkey will also move. The above demo is
 quite interesting and lets us allow other animation to be created using react-motion API.

 115 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 Context
 Context in React.js is the concept of passing data through a component tree without passing
 props down manually to each level.

 In basic React applications, to pass data from parent to child is done using props but this is a
 heavy approach if data needs to be passed on multiple levels like passing username or
 theme required by most of the components in the application. Context lets you provide the
 functionality to share values among components without explicitly passing props through
 every level of the component tree.

 Mainly context is used when the current authentication, themes, or preferred language need
 to be passed to the child levels when not required to pass props.

 To get data using context we need to follow 3 steps,
 ● We need to first create the context.
 ● Then we need to provide value to the context.
 ● Lastly, we need to consume the value of context.

 Now let’s have a look at the demo,

 For Example - In the current demo, we will see how to use username in child components
 using context.

 First, we will create a new file namely UserContext.js. This is the first step where we are

 import React from 'react'

 const UserContext = React.createContext()

 const UserProvider = UserContext.Provider
 const UserConsumer = UserContext.Consumer

 export {UserProvider,UserConsumer}

 Now, we will create a nested structure in which I will create 3 level components Master
 Component -> Home Component -> Profile Component.

 App.js in which we will execute second step we need to provide value to consumer,

 import React from 'react';
 import './App.css';
 import './css/custom.css';
 import MasterComponent from './components/MasterComponent'
 import { UserProvider } from './components/UserContext';

 function App() {
 return (

 116 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 <div className="App">
 <UserProvider value="New User">

 <MasterComponent />
 </UserProvider>

 </div>
);

 }

 export default App;

 MasterComponent.js

 import React, { Component } from 'react'
 import HomeComponent from './HomeComponent'
 class MasterComponent extends Component {

 render() {
 return (

 <div>
 <HomeComponent />

 </div>
)

 }
 }

 export default MasterComponent

 Now second level component is named HomeComponent.js

 import React, { Component } from 'react'
 import ProfileComponent from './ProfileComponent'

 class HomeComponent extends Component {
 render() {

 return (
 <div>

 <ProfileComponent/>
 </div>

)
 }

 }
 export default HomeComponent

 And third level Component named ProfileComponent in which we are going to consume
 context value

 import React, { Component } from 'react'

 117 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 import { UserConsumer } from './UserContext';

 class ProfileComponent extends Component {
 render() {

 return (
 <UserConsumer>

 {
 (username) => {

 return <div>Hello {username}</div>
 }

 }
 </UserConsumer>

)
 }

 }
 export default ProfileComponent

 If in UserContext.js while creating context we will define default value and if in case we don't
 provide any value in component then it will take default value from UserContext,

 //And App.js code will be as below,
 import React from 'react';
 import './App.css';
 import './css/custom.css';
 import MasterComponent from './components/MasterComponent'
 import { UserProvider } from './components/UserContext';

 function App() {
 return (

 <div className="App">
 {/* <UserProvider> */}
 <MasterComponent />
 {/* </UserProvider> */}

 </div>
);

 }
 export default App;

 While using context we can only pass one value, for multiple values we need to use multiple
 context.
 There is one more way to access context value using Context Type property.

 First we need to export UserContext from UserContext.js file,

 import React from 'react'

 118 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 const UserContext = React.createContext('Guest')
 const UserProvider = UserContext.Provider
 const UserConsumer = UserContext.Consumer

 export {UserProvider,UserConsumer}
 export default UserContext

 Now we will consume context value using contextType in HomeComponent.js

 import React, { Component } from 'react'
 import ProfileComponent from './ProfileComponent'
 import UserContext from './UserContext'

 class HomeComponent extends Component {
 render() {

 return (
 <div>

 Home Component {this.contextType}
 <ProfileComponent/>

 </div>
)

 }
 }

 HomeComponent.contextType = UserContext

 export default HomeComponent

 Accessing multiple context values,

 import React from 'react'
 const UserContext = React.createContext('Guest')
 const ThemeContext = React.createContext('theme')
 const UserProvider = UserContext.Provider
 const UserConsumer = UserContext.Consumer
 const ThemeProvider = ThemeContext.Provider
 const ThemeConsumer = ThemeContext.Consumer
 export {UserProvider,UserConsumer,ThemeConsumer,ThemeProvider}

 export default UserContext

 and using it in App.js,

 import React from 'react';
 import './App.css';
 import './css/custom.css';

 119 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 import MasterComponent from './components/MasterComponent'
 import { UserProvider, ThemeProvider } from './components/UserContext';

 function App() {
 return (

 <div className="App">
 <UserProvider value="New User">

 <ThemeProvider value="red">
 <MasterComponent />

 </ThemeProvider>
 </UserProvider>

 </div>
);

 }

 export default App;

 Now consuming value of ThemeProvider in ProfileComponent.js file,

 import React, { Component } from 'react'
 import { UserConsumer,ThemeConsumer } from './UserContext';

 class ProfileComponent extends Component {
 render() {

 return (
 <UserConsumer>

 {
 username => (
 <ThemeConsumer>
 {color => (

 <div style={{ color: color }}>Hello {username}</div>
)}
 </ThemeConsumer>

)}
 </UserConsumer>

)
 }

 }
 export default ProfileComponent

 Limitation of Context
 Context can only be used with the class component.

 Using context type only a single context value can be accessed. For accessing multiple
 values, we will need to use nested consumer context.

 120 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 HTTP

 Basics of HTTP and React
 So far, we have learned about the basics of React and how props and state are used. Now,
 we will learn how React makes API calls to fetch data and display in the browser. As React is
 just a library for the user interface, it only knows about Props and State so here, HTTP comes
 into the picture.

 To fetch data in React, there are many HTTP libraries available like - Apollo , Axios , Relay
 Modern , Request , and Superagent . In this article, we are going to use Axios library.

 To install axios

 npm install axios

 After the command is executed successfully, we will see in the package.json file that the
 dependencies are updated.

 Now, we will see how we can fetch data and display it in the browser.

 HTTP GET
 Here, we are using an online API to fetch data from it instead of creating our own API. We
 are using https://reqres.in/ to test our application.

 Create a component named DisplayList.js.

 import React, { Component } from 'react'
 export class DisplayList extends Component {

 render() {
 return (

 <div>
 List of Users

 </div>
)

 }
 }
 export default DisplayList

 121 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 And include this component in App.js.

 import React from 'react';
 import logo from './logo.svg';
 import './App.css';
 import DisplayList from './components/DisplayList'
 function App() {

 return (
 <div className="App">

 <DisplayList></DisplayList>
 </div>

);
 }
 export default App;

 Now, we will fetch data from the library using Axios. For that, first, we need to import the
 axios library.

 import axios from 'axios'
 Now, to store the data that we get from API, we will create an empty array in state.
 this.state = {

 Users:[]
 }

 Now, we will call the API and store the data in our array in componentDidMount() lifecycle
 method. This is executed when the component mounts for the first time and it is called only
 once.

 So, the component will go like below.

 import React, { Component } from 'react'
 import axios from 'axios'

 const error ={
 color: 'red',
 fontWeight:'bold',
 fontSize:'14'

 }

 export class DisplayList extends Component {
 constructor(props) {

 super(props)

 this.state = {
 users:[],
 errorMessage:""

 122 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 }
 }

 componentDidMount(){
 axios.get('https://reqres.in/api/users/')
 .then(response => {

 console.log(response.data.data)
 this.setState({

 users:response.data.data
 })

 })
 .catch(error =>{

 this.setState({
 errorMessage:"Error fetching data"

 })
 })

 }
 render() {

 const {users,errorMessage} = this.state
 console.log(users.length)
 return (

 <div>
 List of Users
 {

 users.length?
 users.map(user=> <div key={user.id}><img src={user.avatar}

 alt={user.first_name}/>{user.first_name + " "+ user.last_name}</div>):
 null

 }
 {errorMessage ? <div style={error}>{errorMessage}</div> : null}

 </div>
)

 }
 }

 export default DisplayList

 In the above, componentDidMount() will be called once the component is mounted, so it
 will display a list of users from the provided API. If the API is incorrect or does not return
 output, then the error message will be displayed.
 HTTP and React

 123 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 HTTP POST
 Like HTTP Get, we use the Axios Post method to send the data to the API we use.

 Example:

 import React, { Component } from 'react'
 import axios from 'axios'

 class UserForm extends Component {
 constructor(props) {

 super(props)

 this.state = {
 first_name: "",
 last_name: "",
 email: ""

 }
 }

 onChangeHandler = (e) => {
 this.setState({ [e.target.name]: e.target.value })

 }

 onSubmitHandler = (e) => {
 e.preventDefault();
 console.log(this.state)
 axios.post('https://reqres.in/api/users/',this.state)
 .then(response=>{

 console.log(response)
 })
 .catch(error => {

 console.log(error)
 })

 }

 render() {
 const { first_name, last_name, email } = this.state
 return (

 <div>
 <form onSubmit={this.onSubmitHandler}>

 <div>
 Email : <input type="text" name="email" value={email}

 onChange={this.onChangeHandler} />
 </div>
 <div>

 First Name : <input type="text" name="first_name" value={first_name}
 onChange={this.onChangeHandler} />

 124 Prepared By: Prof. Hardik Chavda

 UNIT- 4 Memo, Refs, Props and Context

 </div>
 <div>

 Last Name : <input type="text" name="last_name" value={last_name}
 onChange={this.onChangeHandler} />

 </div>
 <button type="submit">Submit</button>

 </form>
 </div>

)
 }

 }

 export default UserForm

 Let us include the UserForm component in App.js.

 import React from 'react';
 import './App.css';
 import UserForm from './components/UserForm'

 function App() {
 return (

 <div className="App">
 <UserForm></UserForm>

 </div>
);

 }

 export default App;

 We can also use the PUT, DELETE function in the same way.

 125 Prepared By: Prof. Hardik Chavda

