
UNIT- 5 Introduction to Hooks and its implementation

137 Prepared By: Prof. Hardik Chavda

Introduction: React Hooks introduction

If you don’t like classes then hooks are here to help you. Hooks are functions that enable youto use React functionalities like state and lifecycle features without using classes. As the namesuggests, it enables you to hook into React state and lifecycle features from functioncomponents.
Hooks do not work inside classes and are backward-compatible, meaning they have nobreaking changes. So, it is your choice if you want to use them or not. This new feature givesyou the power to use all React features, even the function components.
Make sure you write hooks in standard follow form. Call hooks at the top level of Reactfunctions to ensure that hooks are called in the same order every time. Try to avoid callingthem in loops, nested functions, or inside conditions. Also, make sure you call them from theReact function component, not from JavaScript functions. If you don’t follow that rule then itmay result in some unexceptional behaviors. React also provides a linter plugin to ensure thatthese rules apply automatically.
You don’t have to install anything to use hooks. They come with React from the 16.8 versiononward.

UNIT- 5 Introduction to Hooks and its implementation

138 Prepared By: Prof. Hardik Chavda

useState Hook
To declare, change and use states using hooks we have useState() function component. Itreturns two value pairs, the current state, and a function to update the state. It is somethinglike this.setState in a class but it is different from this.setState by the fact that it does notcombine the old and new state. UseState() can be called inside a function component or froman event handler. The initial state is passed inside useState() as an argument which is usedduring the first render. There is no bound on usingmultiple state hooks in a single component;we can use as many as we want.
import React, { useState } from 'react';
export default function App() {const [counter, setCounter] = useState(1);const incrBy3 = () => {setCounter(counter + 3);};return (<div className="container"><h1>Increment By 3</h1><div className="counter-box">{counter}<button onClick={incrBy3}>+ 3</button></div></div>);}

Interesting Facts of useState HookA few points to emphasize here that we often ignore.
With the useState hook, the state gets created only at the first render using the initial valuewe pass as an argument to it.For every re-render (subsequent renders after the initial render), ReactJS ignores the initialvalue we pass as the argument. In this case, it returns the current value of the state.ReactJS provides us with a mechanism to get the previous state value when dealing with thecurrent state value.That's all about the interesting facts, but they may not make much sense withoutunderstanding their advantages. So, there are two primary advantages,
We can perform a lazy initialization of the state.We can use the previous state value alongside the current one to solve a use case.

UNIT- 5 Introduction to Hooks and its implementation

139 Prepared By: Prof. Hardik Chavda

How to perform Lazy Initialization of the State?If the initial state value is simple data like a number, string, etc., we are good with how wehave created and initialized the state in the above example. At times, you may want toinitialize the state with a computed value. The computation can be an intense and time-takingactivity.
With the useState hook, you can pass a function as an argument to initialize the state lazily.As discussed, the initial value is needed only once at the first render. There is no point inperforming this heavy computation on the subsequent renders.
const [counter, setCounter] = useState(() => Math.floor(Math.random() * 16));
The code snippet above lazily initializes the counter state with a random number. Please note,you don't have to do this always, but the knowledge is worthy. Now you know you have a wayto perform lazy state initialization.

useState Previous stateThe useState hook returns a function to update the state. In our example, we know it as thesetCounter(value) method. A specialty of this method is, you can get the previous(or old)state value to update the state. Please take a look into the code snippet below,
const incrBy3 = () => {setCounter((prev) => prev + 3);};
Here we pass a callback function to the setCounter() method that gives us the previousvalue to use. Isn't that amazing?

useState with object
One of React’s most commonly used Hooks is useState, which manages states in Reactprojects as well as objects’ states. With an object, however, we can’t update it directly or thecomponent won’t rerender.
To solve this problem, we’ll look at how to use useState when working with objects, includingthe method of creating a temporary object with one property and using object destructuringto create a new object from the two existing objects.
In the following code sample, we’ll create a state object, shopCart, and its setter, setShopCart.shopCart then carries the object’s current state while setShopCart updates the state value ofshopCart

UNIT- 5 Introduction to Hooks and its implementation

140 Prepared By: Prof. Hardik Chavda

const [shopCart, setShopCart] = useState({});
let updatedValue = {};updatedValue = { "item1": "juice" };setShopCart(shopCart => ({...shopCart,...updatedValue}));
We can then create another object, updatedValue, which carries the state value to updateshopCart.
By setting the updatedValue object to the new {"item1":"juice"} value, setShopCart canupdate the value of the shopCart state object to the value in updatedValue.

useState with array
Arrays are mutable in JavaScript, but you should treat them as immutable when you storethem in state. Just like with objects, when you want to update an array stored in state, youneed to create a new one (or make a copy of an existing one), and then set state to use thenew array.’
In React, Let's first create a friends array. We will have two properties, name, and age.
const friendsArray = [{ name: "John",age: 19,},{ name: "Candy",age: 18,},{ name: "mandy",age: 20,},];
Now let's work with this array and useState
import { useState } from "react";
const App = () => {

UNIT- 5 Introduction to Hooks and its implementation

141 Prepared By: Prof. Hardik Chavda

const [friends, setFriends] = useState(friendsArray); // Setting default value
const handleAddFriend = () => {...};
return (<main>// Mapping over array of friends{friends.map((friend, index) => (// Setting "index" as key because name and age can be repeated, It will bebetter if you assign uniqe id as key<li key={index}>name: {friend.name}{" "}age: {friend.age}))}<button onClick={handleAddFriend}>Add Friends</button></main>);};export default App;

Here, we are mapping over a friends array and displaying it.
Let's now see How to add new values to this array
const handleAddFriend = () => {setFriends((prevFriends) => [...prevFriends,{ name: "Random Friend Name",age: 20, // Random age},]);};
Here, setState lets us define an anonymous function that has its previews state as anargument to the function, then we are using spread operator to get our all previewsvalue(state) now after this we can add our new value.

UNIT- 5 Introduction to Hooks and its implementation

142 Prepared By: Prof. Hardik Chavda

useEffect: useEffect Hook

To perform side effects operations like changing DOM, data fetching, etc., fromReact functioncomponents we use Effect hook, i.e., useEffect. These operations are called so since they canaffect other components and can’t be performed during rendering. UseEffect hook providesus the power of componentDidMount, componentDidUpdate, andcomponentWillUnmount.
UseEffect is declared inside the components because they need to have access to their stateand props. UseEffect can be run at first render, after every render, or used to specify clean upbased on how we declare them. By default, they run after every render including the firstrender.
import React, {useState,useEffect} from 'react';
function usingEffect() {const [count, setCount] = useState(0);
/* default behavior is similar to componentDidMount and componentDidUpdate: */useEffect(() => {

UNIT- 5 Introduction to Hooks and its implementation

143 Prepared By: Prof. Hardik Chavda

// Change document titledocument.title = `Clicked {count} times`;});
return (<div><p>Clicked count = {count}</p><button onClick={() => setCount(count + 1)}>Button</button></div>);}

In the above example we are updating the document title every time the count gets updated.Here useEffect is working similarly to componentDidMount and componentDidUpdatecombined since it will run during the first render and also after every update. This is thedefault behavior of useEffect, but it can be changed. Let’s see how.
useEffect after render

If you want to use useEffect as componentDidMount then you can pass an empty array [] inthe second argument to useEffect as in the below example:
import React, {useState,useEffect} from 'react';
function usingEffect() {const [count, setCount] = useState(0);
// Similar to componentDidMountuseEffect(() => {// Only update when component mountdocument.title = `You clicked {count} times`;}, []);
return (<div><p>Your click count is {count}</p><button onClick={() => setCount(count + 1)}>Button

UNIT- 5 Introduction to Hooks and its implementation

144 Prepared By: Prof. Hardik Chavda

</button></div>);}

Conditionally run effects, run effects only once
If you want to use it as componentDidUpdate, which only re-renders if a specific state isupdated, then we can pass that state value in the second argument of useEffect as below:
useEffect(() => {document.title = `Clicked {count} times`;}, [count]); /* if count changes then only effect is re-run */The above code is similar to the below code when we use classes.
componentDidUpdate(prevProps, prevState) {if (prevState.count !== this.state.count) {document.title = `Clicked {this.state.count} times`;}}

useEffect with cleanup,If you also want it to perform the componentWillUnmount function, (which can be used forclean up), then we can return value from useEffect.
useEffect(() => {function handleStatusChange(status) {setStatus(status);}
API.changeStatusToTrue(props.status, handleStatusChange);return () => {/* for implementing componentDidUnmount behaviour */API.changeStatusToFalse(props.status, handleStatusChange);};}, [props.status]); /* re-run only if props.status changes */

UNIT- 5 Introduction to Hooks and its implementation

145 Prepared By: Prof. Hardik Chavda

useEffect with incorrect dependency

useEffect() hook manages the side-effects like fetching over the network, manipulating DOMdirectly, and starting/ending timers.
Although the useEffect() is one of the most used hooks along with useState(), it requires timeto familiarize and use correctly.
A pitfall youmight experiencewhenworking with useEffect() is the infinite loop of componentrenderings. In this post, I'll describe the common scenarios that generate infinite loops andhow to avoid them.
Let's say you want to create a component having an input field, and also display how manytimes the user changed that input.
import { useEffect, useState } from 'react';
function CountInputChanges() {const [value, setValue] = useState('');const [count, setCount] = useState(-1);
useEffect(() => setCount(count + 1));const onChange = ({ target }) => setValue(target.value);return (<div><input type="text" value={value} onChange={onChange} /><div>Number of changes: {count}</div></div>)}

UNIT- 5 Introduction to Hooks and its implementation

146 Prepared By: Prof. Hardik Chavda

After initial rendering, useEffect() executes the side-effect callback and updates the state.The state update triggers re-rendering. After re-rendering useEffect() executes the side-effectcallback and again updates the state, which triggers again a re-rendering. ...and so onindefinitely.
The infinite loop is fixed with correct management of the useEffect(callback, dependencies)dependencies argument.
Because you want count to increment when value changes, you can simply add value as adependency of the side-effect:
import { useEffect, useState } from 'react';function CountInputChanges() {const [value, setValue] = useState('');const [count, setCount] = useState(-1);useEffect(() => setCount(count + 1), [value]); // Solutionconst onChange = ({ target }) => setValue(target.value);return (<div><input type="text" value={value} onChange={onChange} /><div>Number of changes: {count}</div></div>);}
By adding [value] as a dependency of useEffect(..., [value]), the count state variable will onlybe updated when [value] changes. This solves the infinite loop.

Now, as soon as you type into the input field, the count state correctly displays the numberof input value changes.

UNIT- 5 Introduction to Hooks and its implementation

147 Prepared By: Prof. Hardik Chavda

Fetching data:Fetching data with useEffect
Side-effects then, are operations that change things outside of your function, making thefunction impure.
Fetching data from an API, communicating with a database, and sending logs to a loggingservice are all considered side-effects, as it's possible to have a different output for the sameinput. For example, your request might fail, your database might be unreachable, or yourlogging service might have reached its quota.
This is why useEffect is the hook for us - by fetching data, we're making our React componentimpure, and useEffect provides us a safe place to write impure code.
You might notice a few things are missing from this example:● we're not doing anything with the data once we fetch it● we've hardcoded the URL to fetch data from
useEffect(() => {const fetchData = async () => {const response = await fetch(`https://swapi.dev/api/people/1/`);const newData = await response.json();};
fetchData();});

To make this useEffect useful, we'll need to:● update our useEffect to pass a prop called id to the URL,● use a dependency array, so that we only run this useEffect when id changes, andthen● use the useState hook to store our data so we can display it later
import React, { useEffect, useState } from 'react';
export default function DataDisplayer(props) {const [data, setData] = useState(null);
useEffect(() => {const fetchData = async () => {const response = await fetch(`https://swapi.dev/api/people/${props.id}/`);const newData = await response.json();

UNIT- 5 Introduction to Hooks and its implementation

148 Prepared By: Prof. Hardik Chavda

setData(newData);};
fetchData();}, [props.id]);
if (data) {return <div>{data.name}</div>;} else {return null;}}

You might find fetching data in this way results in quite a bit of repeated code, especially ifyou're using fetch, and handle error and loading states. To avoid this, a common solution isto write a custom hook.
useContext Hook

React Context is a way to manage state globally.It can be used together with the useState Hook to share state between deeply nestedcomponents more easily than with useState alone.
Create ContextTo create context, you must Import createContext and initialize it:
import { useState, createContext } from "react";import ReactDOM from "react-dom/client";
const UserContext = createContext()
Next we'll use the Context Provider to wrap the tree of components that need the stateContext.
Context ProviderWrap child components in the Context Provider and supply the state value.
function Component1() {const [user, setUser] = useState("Jesse Hall");
return (<UserContext.Provider value={user}><h1>{`Hello ${user}!`}</h1><Component2 user={user} />

UNIT- 5 Introduction to Hooks and its implementation

149 Prepared By: Prof. Hardik Chavda

</UserContext.Provider>);}
Use the useContext HookIn order to use the Context in a child component, we need to access it using the useContextHook.
First, include the useContext in the import statement:
import { useState, createContext, useContext } from "react";
Then you can access the user Context in all components:
function Component5() {const user = useContext(UserContext);
return (<><h1>Component 5</h1><h2>{`Hello ${user} again!`}</h2></>);}

UNIT- 5 Introduction to Hooks and its implementation

150 Prepared By: Prof. Hardik Chavda

useReducer Hook:useReducer – simple state and action

If you've used the useState() hook to manage a non-trivial state like a list of items, where youneed to add, update and remove items in the state, you can notice that the statemanagementlogic takes a good part of the component's body.
A React component should usually contain the logic that calculates the output. But the statemanagement logic is a different concern that should be managed in a separate place.Otherwise, you get a mix of state management and rendering logic in one place, and that'sdifficult to read, maintain, and test!
To help you separate the concerns (rendering and state management) React provides thehook useReducer(). The hook does so by extracting the state management out of thecomponent.
Let's see how the useReducer() hook works with accessible real-world examples.
import { useReducer } from 'react';function MyComponent() {const [state, dispatch] = useReducer(reducer, initialState);const action = {type: 'ActionType'};return (<button onClick={() => dispatch(action)}>Click me</button>);}

UNIT- 5 Introduction to Hooks and its implementation

151 Prepared By: Prof. Hardik Chavda

The following reducer function supports the increase and decrease of a counter state:
function reducer(state, action) {let newState;switch (action.type) {case 'increase':newState = { counter: state.counter + 1 };break;case 'decrease':newState = { counter: state.counter - 1 };break;default:throw new Error();}return newState;}

complex state and action

The dispatch function with the action object is called as a result of an event handler orcompleting a fetch request.
Then React redirects the action object and the current state value to the reducer function.
The reducer function uses the action object and performs a state update, returning the newstate.
React then checks whether the new state differs from the previous one. If the state hasbeen updated, React re-renders the component, and useReducer() returns the new statevalue: [newState, ...] = useReducer(...).

UNIT- 5 Introduction to Hooks and its implementation

152 Prepared By: Prof. Hardik Chavda

multiple useReducers

We will use the same reducer function for multiple counters. We don’t need to initialize thedifferent states for the second counter. All useReducer hooks will behave as individualstates.
import React, { useReducer } from "react";
const initialState = 0;
const reducer = (state, action) => {switch (action) {case 'increment':return state + 1;case 'decrement':return state - 1;case 'reset':return initialState;default:return state;}}
function App() {const [count, dispatch] = useReducer(reducer, initialState);const [count2, dispatch2] = useReducer(reducer, initialState);
return (<div classname="App"><h3>Multiple useReducer hook - Clue Mediator</h3>First Counter: {count}<button onclick={() ==> dispatch('increment')}>Increment</button>

UNIT- 5 Introduction to Hooks and its implementation

153 Prepared By: Prof. Hardik Chavda

<button onclick={() ==> dispatch('decrement')}>Decrement</button><button onclick={() ==> dispatch('reset')}>Reset</button>

Second Counter: {count2}<button onclick={() ==> dispatch2('increment')}>Increment</button><button onclick={() ==> dispatch2('decrement')}>Decrement</button><button onclick={() ==> dispatch2('reset')}>Reset</button></div>);}
export default App;
import React, { useReducer } from "react";
const initialState = 0;
const reducer = (state, action) => {switch (action) {case 'increment':return state + 1;case 'decrement':return state - 1;case 'reset':return initialState;default:return state;}}
function App() {const [count, dispatch] = useReducer(reducer, initialState);const [count2, dispatch2] = useReducer(reducer, initialState);
return (<div classname="App"><h3>Multiple useReducer hook - Clue Mediator</h3>First Counter: {count}<button onclick={() ==> dispatch('increment')}>Increment</button><button onclick={() ==> dispatch('decrement')}>Decrement</button><button onclick={() ==> dispatch('reset')}>Reset</button>

Second Counter: {count2}

UNIT- 5 Introduction to Hooks and its implementation

154 Prepared By: Prof. Hardik Chavda

<button onclick={() ==> dispatch2('increment')}>Increment</button><button onclick={() ==> dispatch2('decrement')}>Decrement</button><button onclick={() ==> dispatch2('reset')}>Reset</button></div>);}
export default App;

UNIT- 5 Introduction to Hooks and its implementation

155 Prepared By: Prof. Hardik Chavda

useContextuseContext is a React Hook that lets you read and subscribe to context from your component.
useContext(SomeContext)
Call useContext at the top level of your component to read and subscribe to context.
import { useContext } from 'react';
function MyComponent() {const theme = useContext(ThemeContext);// ...

ParametersSomeContext: The context that you’ve previously created with createContext. The contextitself does not hold the information, it only represents the kind of information you can provideor read from components.
ReturnsuseContext returns the context value for the calling component. It is determined as the valuepassed to the closest SomeContext.Provider above the calling component in the tree. If thereis no such provider, then the returned value will be the defaultValue you have passed tocreateContext for that context.The returned value is always up-to-date. React automatically re-renders components thatread some context if it changes.
CaveatsuseContext() call in a component is not affected by providers returned from the samecomponent. The corresponding <Context.Provider> needs to be above the component doingthe useContext() call.
React automatically re-renders all the children that use a particular context starting from theprovider that receives a different value. The previous and the next values are compared withthe Object.is comparison. Skipping re-renders with memo does not prevent the childrenreceiving fresh context values.
If your build system produces duplicates modules in the output (which can happen withsymlinks), this can break context. Passing something via context only works if SomeContextthat you use to provide context and SomeContext that you use to read it are exactly the sameobject, as determined by a === comparison.

UNIT- 5 Introduction to Hooks and its implementation

156 Prepared By: Prof. Hardik Chavda

Usage
Call useContext at the top level of your component to read and subscribe to context.
import { useContext } from 'react';
function Button() {const theme = useContext(ThemeContext);// ...
useContext returns the context value for the context you passed. To determine the contextvalue, React searches the component tree and finds the closest context provider above forthat particular context.
To pass context to a Button, wrap it or one of its parent components into the correspondingcontext provider:
function MyPage() {return (<ThemeContext.Provider value="dark"><Form /></ThemeContext.Provider>);}
function Form() {// ... renders buttons inside ...}
It doesn’t matter how many layers of components there are between the provider and theButton. When a Button anywhere inside of Form calls useContext(ThemeContext), it willreceive "dark" as the value.
NOTE:useContext() always looks for the closest provider above the component that calls it. Itsearches upwards and does not consider providers in the component from which you’recalling useContext().

UNIT- 5 Introduction to Hooks and its implementation

157 Prepared By: Prof. Hardik Chavda

Updating data passed via contextOften, you’ll want the context to change over time. To update context, combine it withstate. Declare a state variable in the parent component, and pass the current state down asthe context value to the provider.
function MyPage() {const [theme, setTheme] = useState('dark');return (<ThemeContext.Provider value={theme}><Form /><Button onClick={() => {setTheme('light');}}>Switch to light theme</Button></ThemeContext.Provider>);}

useReduceruseReducer is a React Hook that lets you add a reducer to your component.
const [state, dispatch] = useReducer(reducer, initialArg, init?)
Call useReducer at the top level of your component to manage its state with a reducer.
import { useReducer } from 'react';
function reducer(state, action) {// ...}
function MyComponent() {const [state, dispatch] = useReducer(reducer, { age: 42 });// ...

Parameters
· reducer: The reducer function that specifies how the state gets updated. It must bepure, should take the state and action as arguments, and should return the next state.State and action can be of any type.

UNIT- 5 Introduction to Hooks and its implementation

158 Prepared By: Prof. Hardik Chavda

· initialArg: The value from which the initial state is calculated. It can be a value of anytype. How the initial state is calculated from it depends on the next init argument.
· optional init: The initializer function that should return the initial state. If it’s notspecified, the initial state is set to initialArg. Otherwise, the initial state is set to theresult of calling init(initialArg).

ReturnsuseReducer returns an array with exactly two values:
The current state. During the first render, it’s set to init(initialArg) or initialArg (if there’s noinit). The dispatch function that lets you update the state to a different value and trigger a re-render.
CaveatsuseReducer is a Hook, so you can only call it at the top level of your component or your ownHooks. You can’t call it inside loops or conditions. If you need that, extract a new componentand move the state into it.
In Strict Mode, React will call your reducer and initializer twice in order to help you findaccidental impurities. This is development-only behavior and does not affect production. Ifyour reducer and initializer are pure (as they should be), this should not affect your logic.
The result from one of the calls is ignored.
UsageCall useReducer at the top level of your component to manage state with a reducer.
import { useReducer } from 'react';
function reducer(state, action) {// ...}
function MyComponent() {const [state, dispatch] = useReducer(reducer, { age: 42 });// ...
useReducer returns an array with exactly two items:
The current state of this state variable, initially set to the initial state you provided.The dispatch function that lets you change it in response to interaction.
To update what’s on the screen, call dispatch with an object representing what the user did,called an action:

UNIT- 5 Introduction to Hooks and its implementation

159 Prepared By: Prof. Hardik Chavda

function handleClick() {dispatch({ type: 'incremented_age' });}
React will pass the current state and the action to your reducer function. Your reducer willcalculate and return the next state. React will store that next state, render your componentwith it, and update the UI.
import { useReducer } from 'react';
function reducer(state, action) {if (action.type === 'incremented_age') {return {age: state.age + 1};}throw Error('Unknown action.');}
export default function Counter() {const [state, dispatch] = useReducer(reducer, { age: 42 });
return (<><button onClick={() => {dispatch({ type: 'incremented_age' })}}>Increment age</button><p>Hello! You are {state.age}.</p></>);}

UNIT- 5 Introduction to Hooks and its implementation

160 Prepared By: Prof. Hardik Chavda

Fetching data with useReduer
Using the useReducer() hook, we are going to fetch data from the API. We have performeddata fetching in the previous article from ‘https://reqres.in’ API using Axios library; here, wewill be using useReducer() hook for fetching data.
Let’s look at the example first with the use of useEffect() hook with the same example weused for useReducer() hook,
First, to start with, we need to install the Axios library using a command mentioned below.
//GetData_Reduce.js
import React, { useEffect, useReducer } from 'react'import axios from 'axios'
const initialState = {user: {},loading: true,error: ''}
const reduce = (state, action) => {switch (action.type) {case 'OnSuccess':return {loading: false,user: action.payload,error: ''}case 'OnFailure':return {loading: false,user: {},error: 'Something went wrong'}

default:return state}}
function GetData_Reduce() {const [state, dispatch] = useReducer(reduce, initialState)

UNIT- 5 Introduction to Hooks and its implementation

161 Prepared By: Prof. Hardik Chavda

useEffect(() => {axios.get('https://reqres.in/api/users/2').then(response => {dispatch({ type: 'OnSuccess', payload: response.data.data })}).catch(error => {dispatch({ type: 'OnFailure' })})}, [])
return (<div>{state.loading ? 'Loading!! Please wait' : state.user.email}{state.error ? state.error : null}</div>)}

export default GetData_Reduce
//App.js
import React from 'react';import './App.css';import GetData_Reduce from './components/GetData_Reduce;
function App() {
return (<div className="App"><GetData_Reduce/></div>);}
export default App;
First, it will display the loading screen.Once the data is loaded from the API, the data will be displayed on the screen.

UNIT- 5 Introduction to Hooks and its implementation

162 Prepared By: Prof. Hardik Chavda

useState vs useReduceWhat is the difference between useState() and useReducer() hook?
Scenario useState() useReducer()

Type of state Use it when working withNumber, Boolean, and String Use it when working withobject or Array

Number of state Transition
useState hook has only one ortwo transitions so it should beused when you have only 1 or2 setState calls

useReducer() hook should beused when many transitions soit must be used when we havemany setState that need to becalled
Related State Transition No related transition It includes state transition

Business Logic useState has no business logic
When your applicationinvolves complex datatransformation ormanipulation that this shouldbe used

Local vs Global
When dealing with a singlecomponent and need toperform operations locallythan useState should be used

When you want to deal withmultiple components forpassing data from onecomponent to another thenuseReducer() is a betterapproach.

